CONTRIBUCIONES
PROGRAMA-FLACSO SANTIAGO DE CHILE
NUMERO 2, Agosto 1980.

LA DESTRUCCION DEL EMPLEO Y LA LOGICA
CONTEMPORANEA DEL TRABAJO.

Herman Schwember
Esta serie de documentos es editada por el Programa de la Facultad Latinoamericana de Ciencias Sociales (FLACSO), en Santiago de Chile. Las opiniones que en los documentos se presentan, así como los análisis e interpretaciones que en ellos se contienen, son de la responsabilidad exclusiva de sus autores y no reflejan necesariamente los puntos de vista de la Facultad
PRESENTACION

El Programa de la Facultad Latinoamericana de Ciencias Sociales (FLACSO) en Santiago de Chile publica esta vez en su serie Contribuciones el paper "La destrucción del empleo y la lógica contemporánea del trabajo", del profesor Herman Schwember este último fue profesor de la Escuela de Ingeniería de la Universidad Católica de Chile, Vice-rector en esa Universidad y se desempeña actualmente como Consultor en FRIDA, agencia privada de colaboración para el desarrollo de Africa, con sede en Londres. El trabajo que aquí se presenta es un capítulo integrante de una obra mayor en vías de publicación.

Santiago, Octubre de 1980
LA DESTRUCCIÓN DEL EMPLEO Y LA LOGICA CONTEMPORANEA DEL TRABAJO

"Si fuera posible que las lanzaderas del taller se desplazaran por sí solas y que el plectro pulsa la lira del mismo modo, los patrones no necesitarían trabajadores, ni los amos esclavos". Aristóteles1/

"Si seguimos como estamos y rechazamos las nuevas tecnologías nos enfrentaremos a un desempleo de 5.5 millones para fines de siglo. Si nos embarcamos con las nuevas tecnologías y aceptamos el desafío, nos encontraríamos con que los desplazados serán 5 millones". C. Jenkins y B. Sherman2/

La industria moderna parece estar atrapada en el proceso de eliminación de puestos de trabajo. En todos los países de la órbita capitalista el desempleo está alcanzando niveles trágicos mientras los empleadores presionan por obtener mayores incentivos para invertir, por la libertad de desplazar sus fábricas hacia zonas de mano de obra más barata y por mayor flexibilidad en las leyes sobre despidos. Junto con invocar la necesidad de aumentar la productividad para mantenerse competitivos, orientan las inversiones a los sectores más intensivos en capital.

El exceso de liquidez en los mercados financieros va acompañado de quejas por la falta de oportunidades para invertir y por la debilidad de la demanda del mercado consumidor. El indicador principal, capital invertido por puesto creado, aumenta en forma exponencial y, especialmente en los países desarrollados, llega a menudo a cientos de miles de dólares.

Al mismo tiempo, los trabajadores organizados exigen más empleos y luchan por defender los que se ven amenazados, al punto que muchas veces no se detienen a examinar el destino de lo que ellos producen con tal de conservar los empleos. Sindicatos nada pasivos han debido transar y estar dispuestos a producir armas y
materiales bélicos y represivos que terminarán ayudando a regímenes totalitarios.

A primera vista esta situación que adquiere cada día contornos más agudos, se contradice con el argumento clásico de que los patrones se enriquecen explotando al trabajador y apropiándose de su plusvalía. Cuando los países industriales de occidente, que se habían acostumbrado al empleo pleno después de la guerra, surgen una tasa de desempleo que no baja del 5 por ciento; y otros países que hasta hace poco parecían avanzar en el proceso de industrialización, como los del Cono Sur de América Latina, retroceden a desempleos del orden del 15 al 20 por ciento, no sólo hay una contracción de la demanda real sino que incluso podría parecer que se ha restablecido una competencia efectiva entre los productores.

Dado que en estos casos se mezclan demasiados factores financieros, técnicos y de competencia por encima de las fronteras, será indispensable combinar los argumentos propiamente económicos con el análisis técnico del proceso productivo.

Aceptando que el llamado desarrollo tecnológico aumenta la productividad y reemplaza algunas actividades humanas por maquinaria, estudiaremos lo que llamamos el proceso de sustitución del trabajo humano. En términos generales entenderemos por tal el cambio tecnológico que, en un contexto socio-económico dado, determina qué aspectos de una actividad realizada hasta entonces por trabajo humano pueden ser llevados a cabo por una máquina y qué familias de máquinas se originan de este modo. Espero demostrar que la segunda cuestión es tan importante para entender el proceso de sustitución como la primera.

Los economistas, especialmente los grandes pensadores del período clásico, dedicaron mucha atención a explicar el papel del trabajo en el proceso productivo. David Ricardo por ejemplo, estableció el principio de que el precio local relativo de los productos depende principalmente de la cantidad de trabajo requerida
por su producción y mostró cómo la renta era eliminada del costo de producción. Después de él, Marx estudió una cantidad enorme de antecedentes históricos, información empírica y análisis teórico para desarrollar la tesis de la apropiación de la plusvalía que sirve de base a *El Capital*.

Aunque Marx explicó con rigor y coherencia la casi totalidad de los fenómenos económicos de su tiempo, no pudo prever todas las consecuencias que para el proceso económico tendrían los desarrollos tecnológicos y los mecanismos financieros. Frente a los primeros, planteó como piedra angular de su análisis la teoría del valor que, reducida de modo brutal a su mínima expresión indispensable, afirma que el trabajo humano es la única fuente de valor económico. La maquinaria, que es cuidadosamente analizada por Marx y que es parte de lo que él llama fuerzas productivas, representa la condensación del valor de trabajo anterior pero no genera plusvalía. De ahí que Marx distinga entre capital constante y capital variable o pago de salarios, y que sea sólo este último el que genera plusvalía y determina la tasa de explotación. De este modo el crecimiento económico en el sistema capitalista es explicado a través de la acumulación histórica de plusvalía en manos de los capitalistas, siendo tal plusvalía la diferencia entre el valor creado por la fuerza de trabajo y la fracción de ese valor pagada para asegurar que dicha fuerza se mantiene y reproduce. Este marco determina una racionalidad que obliga al capitalista a competir por realizar el valor de su producción, vale decir vender su mercancía, y que lo obliga a aumentar la fracción de capital constante y entrar en el proceso de disminución de la ganancia.

Sin preocuparnos por ahora de todas las consecuencias que las ideas centrales de Marx tienen para su análisis económico, debemos reconocer que él hizo grandes esfuerzos por medir la fuerza de trabajo y discutió en detalle cuestiones como el tiempo o jornada de trabajo, la calificación del trabajo aludiendo al trabajo simple o no calificado como aquél que cualquier persona puede llevar a cabo en un contexto social y cultural dados, y explicando el
trabajo calificado como aquél en que el trabajador ya ha acumulado su propio esfuerzo de entrenarse y educarse. Por esta vía Marx fue llevado a hacer comparaciones de productividad dentro de una misma rama industrial o entre ramas distintas. Todo esto sucedía en el contexto industrial más desarrollado de su tiempo, vale decir en Inglaterra, y las ramas industriales analizadas más frecuentemente - textiles, cerámica, industria panificadora - corresponden en general a lo que hoy llamaríamos industrias intensivas en mano de obra.

Evidentemente, Marx creó un gran problema para la ciencia económica nacida al abrigo de la revolución industrial y orientada a fundamentar y justificar los intereses del capitalismo industrial contra los terratenientes y rentistas conservadores y retrógrados desde el punto de vista de la dinámica económica. Una teoría científica que destruyera las bases morales del sistema e invitará abiertamente a la revolución tenía que ser rechazada no sólo en la práctica política sino también en sus conceptos fundamentales. De ahí que los economistas neoclásicos de la segunda mitad del siglo pasado y en particular hombres como Walras, Jevons, Marshall y Pareto, orientaran sus estudios a la descomposición analítica de la producción en factores objetivos, desvinculados tanto de la interacción social como de la génesis histórica de las relaciones de producción. Una multitud de factores cuantificables - maquinarias y equipos, mano de obra, capital de operaciones, organización, utilidad del inversionista, etc. - se combinan así de acuerdo a leyes técnicas para maximizar algún objetivo - normalmente la utilidad - y determinar una condición de equilibrio, en principio estable. La teoría del valor fue descartada como pura metafísica y así ha seguido dejado de lado por la economía positivista que ha prevalecido5/.

Aunque inicialmente la teoría del equilibrio estático afirmaba que el libre mercado era tal que los niveles de demanda de productos y salarios se ajustarían para que hubiera empleo pleno
con salarios básicos suficientes (a duras penas) para la subsistencia, se reconocía que la "realidad" podía llevar a situaciones que se alejaban del equilibrio perfecto, fuera por distorsiones del mercado o por perturbaciones externas. Sin embargo, si los políticos se abstuvieran de intrusiones indebidas, la mano mágica del mercado - metafísica que venía de los tiempos de Adam Smith - restablecería inexorablemente la tendencia hacia el equilibrio óptimo. El trabajo no era sino otra mercancía con su precio sujeto a la ley de oferta y demanda y no la mercancía tan particular que Marx había analizado como el único generador de valor económico.

El empleo pleno era una condición necesaria y automática de equilibrio de acuerdo a la Ley de Le Say que afirmaba que la oferta real crea su propia demanda. La tensión fundamental que está en la base del capitalismo industrial y que se expresa en los conflictos entre propietarios y fuerza de trabajo perdía así todo asidero lógico y cualquier esfuerzo de los trabajadores para mejorar su participación en el producto no podía sino distorsionar el equilibrio natural de los mercados perfectos. La economía como ciencia le daba así la razón a los capitalistas y toda oposición era reducida a mera política.

Dentro de este cuadro teórico y en medio de la crisis económica que siguió a la catástrofe bursátil de 1929, apareció la gran contribución de Keynes que mostró que el sistema capitalista es tal que se pueden dar perfectamente situaciones de equilibrio estable con niveles importantes de desempleo y que, si el empleo pleno era un objetivo político válido, entonces las herramientas de déficit fiscal y orientación del gasto público debían utilizarse para estimular la demanda. El análisis de Keynes tenía un objetivo eminentemente práctico y de corto plazo y era válido sólo para una economía de capitalismo industrial desarrollado. El mismo Keynes hacía muy explícitos todos los supuestos de sus argumentos y, con sus características talento y elegante estilo satirizaba muchas de las implicaciones ideológicas y pseudo-moralistas del
capitalismo. En cualquier caso, Keynes no se preocupó mayormente de los efectos de largo plazo del desarrollo tecnológico ni de los conflictos estructurales entre los capitalistas y los trabajadores.

En la última década las ideas keynesianas han sido distorsionadas, desprestigiadas por varias circunstancias, sobre todo por el afán de extrapolarlas mecánicamente a contextos subdesarrollados o a situaciones determinadas por cambios estructurales más profundos que los aceptables en herramientas de corto plazo. Simultáneamente se ha impuesto, al menos por un tiempo, la escuela monetarista de Milton Friedman que, junto con re-consagrarn la metafísica del mercado, ha explotado bien una comprensión pragmática de fenómenos monetarios nuevos que parece dar la razón a sus seguidores frente a situaciones de inflación sostenida. Los monetaristas expresan un desprecio absoluto frente a todos los fenómenos económicos básicos: producción, nivel de demanda, estructura de la inversión, desempleo - dado que el sistema está determinado en lo sustancial por fenómenos monetarios y financieros: nivel de emisión, velocidad de circulación, tasas de interés. La única excepción, consecuencia directa de lo anterior, es la preocupación monetarista por el gasto fiscal. En los últimos años el fracaso práctico frecuente de las recetas monetaristas empieza a desplazar el pendulo de las preferencias de los economistas positivistas de vuelta hacia un keynesianismo aggiornado.

Así pues la tradición de la ciencia económica ha trabajado casi exclusivamente con sólo tres enfoques posibles frente al factor trabajo: la ley del valor del pensamiento marxista, heredero en este sentido de las ideas clásicas; la concepción del trabajo como un factor más de producción sujeto a las leyes del mercado, tal como todas las otras mercancías, de acuerdo a los neo-clásicos revividos en los monetaristas contemporáneos; y la identificación práctica de trabajo y empleo que obliga a la intervención gubernamental para regular la normalidad socio-económica del sistema, que condensa las intenciones fundamentales de Keynes.
En las últimas décadas ha surgido una rama especializada de la ciencia económica que vincula los fenómenos laborales a otros indicadores macroeconómicos y que utiliza los métodos econométricos de las correlaciones estadísticas y de las descripciones funcionales de variables medibles. Además de las mediaciones básicas de empleo y desempleo, este enfoque se preocupa del desplazamiento del empleo entre los sectores económicos divididos en primario, secundario y terciario, los coeficientes de elasticidad de sustitución, los precios sombra de la mano de obra y la estructura del mercado laboral, etc.²

Estos métodos tienen las virtudes y limitaciones de casi todo el análisis econométrico: a menudo muestran la existencia de correlaciones efectivas entre variables, sin embargo, sus explicaciones estructurales son limitadas. Es difícil o imposible determinar el dominio de validez de las correlaciones y la posibilidad de extrapolarlas en el tiempo o a otras economías. Por último, suelen ser más útiles para sugerir políticas parciales de modificaciones locales y de corto plazo que para realizar cambios profundos. Jamás se cuestiona el sistema económico en su conjunto ni se examinan las relaciones estructurales básicas. Así, por ejemplo, la tendencia de la fuerza de trabajo a desplazarse hacia el sector terciario es una especie de explicación mágica que, cuando es contradicha empíricamente, toca fondo. Las correlaciones estadísticas se usan para establecer conclusiones técnicas abstractas, por completo desvinculadas de los mecanismos de poder y decisión y de las opciones estructurales de largo plazo.

El Trabajo y sus Componentes Físicos

Creo haber sugerido suficientemente las limitaciones de la ciencia económica frente a la comprensión y análisis del trabajo para justificar un esfuerzo alternativo limitado. En efecto, no se pretende con esta discusión negar la validez del conocimiento que sobre el trabajo como ente central de la vida social ha alcanzado
la ciencia económica, sino sólo examinar en un primer esfuerzo necesariamente superficial, la capacidad de los conceptos de la física y la biofísica de complementar el análisis económico. Es importante mencionar que, aparte de la naturalización con que la física aborda el problema al menos en sus ideas iniciales, una motivación adicional proviene de cierto desencanto con la teoría del valor frente a las realidades económico-financieras contemporáneas en gran escala y rápido cambio tecnológico. En efecto, a estas alturas el inventario de valor almacenado en la forma de máquinas, patentes y know-how es miles de veces mayor que lo que era en tiempos de Marx y el proceso de valorización de la mercancía tanto en el contexto capitalista como en el socialista desarrollado en muchas ocasiones se ha alejado demasiado del postulado ricardino. Quisiera sin embargo tomar por ahora distancia frente a las adhesiones o rechazos dogmáticos de la ley del valor pues creo que unas y otros no hacen justicia a la riqueza del pensamiento de Marx.

Los conceptos que me propongo utilizar son de carácter elemental y se insertan en el desarrollo de la física clásica con algunas derivaciones modernas hacia la cibernética y, a riesgo de escandalizar, hacia la epistemología y la linguística. Aunque este tratamiento será seguramente modificado y mejorado en forma sustancial con la crítica especializada y las constataciones empíricas, me parece suficientemente iluminador como para aventurarme en terrenos poco familiares, a partir eso sí de una base bastante sólida que tiene sus raíces en el singular maestro de la ciencia de occidente, el incomparable Newton.

El primer y más elemental ingrediente físico del trabajo humano es la energía. Instintivamente es fácil aceptar que casi cualquier trabajo humano conceivable requiere algún gasto de energía, pero con seguridad nadie concedería fácilmente que el trabajo humano es por completo reducible a pura energía. Los contraejemplos son demasiado obvios, desde las obras de arte a la producción intelectual.
Dado que la energía se ha puesto de moda en muchos otros contextos, que no se trata de un significado único y que su definición rigurosa puede darse en cualquier nivel de abstracción, aceptemos que tenemos que conquistarla a través de un proceso largo y de muchas vueltas. En las palabras de Henri Poincaré: "en cada caso particular podemos ver claramente qué es la energía y podemos dar una definición provisoria para ella, pero es imposible encontrar una definición general. Si quisiéramos enunciar el principio (de conservación de la energía) en toda su generalidad y aplicarlo al universo, veríamos que aquél se esfuma sin dejar rastro, salvo que hay algo que permanece constante".10

Y, sin embargo, los primeros esfuerzos de los físicos por atrapar el concepto de energía se basaban justamente en un modelo abstracto del trabajo humano que asociamos por lo general con trabajo o actividad física. Quizás la idea que primero se nos viene a la mente frente a la mención de actividad física es la fatiga como resultado del esfuerzo requerido. Es obvio para cualquier aficionado al atletismo que el esfuerzo requerido por una carrera tiene que ver más o menos directamente con la velocidad con que se corre y la distancia que hay que cubrir. Pasemos aquí a un ejemplo más cercano: al mundo del trabajo.

Elijamos una actividad muy elemental, como cavar un hoyo. Si observamos el proceso verificaremos que tal actividad tiene al menos dos resultados: el hoyo adquiere una realidad objetiva, existe ahí en ese jardín por ejemplo; y el que lo cavó está fatigado. Intuimos que el operario invirtió cierta energía (además de otras cosas que por ahora no definiremos) en un proceso que es menos simple que lo que nuestra descripción insinúa. Demos un paso más e imaginemos la secuencia del proceso llevado a cabo por el jardinero:

1) el jardinero necesita consumir alimento para ser capaz del esfuerzo de cavar (adelantemos que los nutricionistas miden el contenido energético de los alimentos en calorías, que es la misma unidad en que se puede medir la actividad de cavar);
ii) la capacidad potencial de hacer el esfuerzo queda almacenada por un tiempo en el cuerpo del jardinero (en caso contrario tendría que cavar mientras come);

iii) la capacidad potencial es desplegada a un cierto ritmo en un proceso cuidadosamente controlado por el jardinero (aunque él no esté consciente de tal control). Vale decir, la energía almacenada en el cuerpo del jardinero es transferida al mundo físico en la forma de hoyo y montón de tierra. Al mismo tiempo (y con esto nos adentramos en terreno muy peligroso) una fracción de la energía ha sido despilfarrada en la forma de calor entregado por el cuerpo del jardinero al ambiente;

iv) en la tierra hay un hoyo: el estado del mundo ha cambiado por la intervención humana de una configuración dada a otra configuración más ordenada, intencionalmente buscada. Esta afirmación en apariencia inocente está preñada de sorpresas que examinaremos más adelante;

v) el jardinero está cansado; probablemente tiene sed y quizás, hambre. Cuando entregó energía a la atmósfera en la forma de calor, también absorbió cierta energía para evaporar el sudor.

Se ve que aún esta descripción burda nos obliga a identificar varios cambios de energía, incluyendo la disipación de calor al ambiente. Esta energía no se ha perdido pues en tal caso se estaría violando la llamada ley de conservación de la energía, pero se ha degradado a una forma en la que no la podemos recuperar para efectuar trabajo útil. A más de todas las complicaciones que la tal energía nos ha introducido, hemos debido hablar de configuraciones, orden, proceso controlado, etc. Estas ideas nos exigirán posteriormente definir con algún cuidado los conceptos de información y entropía. Pero volvamos una vez más a la energía y el trabajo humano.
No necesitamos grandes argumentos para aceptar que uno se cansa mucho más moviendo objetos pesados que cositas livianas; acarréándolos una distancia larga en lugar de un trayecto corto; y haciendo todo esto muy rápido en vez de hacerlo con toda calma. Newton y sus discípulos tenían esto en mente cuando fueron armando sus definiciones, que se pueden ordenar así:

1) el trabajo mecánico es igual a la fuerza desplazada multiplicado por el desplazamiento, en símbolos

\[w = f \times s \{\text{Kg - m}\} \quad \text{<1>}\]

 Nótese que aquí la palabra "trabajo" es sólo una coincidencia sugerente con el trabajo de que habla la economía. Aquí el símbolo entre paréntesis representa las unidades de medición, en este caso kilógrámetros. Y esta necesidad física de especificar las dimensiones apunta a una diferencia fundamental con las categorías de la ciencia económica.

2) De la expresión para \(w \) se deduce que se requiere más trabajo cuando hay que ejercer una fuerza mayor o hay que desplazarla un trecho mayor. La definición siguiente describe la potencia mecánica necesaria para ejercer un cierto trabajo, como el trabajo \(w \) dividido por el tiempo \(t \) usado para ejercerlo:

\[p = \frac{w}{t} = \frac{f \times s}{t} \{\text{Kg - m}\} \quad \text{<2>}\]

De este modo se expresa el hecho que se requiere una potencia mayor para ejercer el mismo trabajo en un tiempo más corto. El caballo de fuerza es la unidad de potencia que viene desde los tiempos en que James Watt inventó la máquina a vapor y aceleró el camino del reemplazo de la energía humana y animal por la energía mecánica. Un caballo de fuerza equivale aproximadamente a 75 kilógrámetros por segundo; vale decir, a la potencia necesaria para levantar 75 kilos a la altura de un metro en un segundo.
Un kilowatt es igual a 1.34 caballos de fuerza.

iii) Finalmente, llegamos a la definición de energía que vincula una cierta potencia a su ejercicio durante cierto lapso, o sea,

\[e = p \times t' = \frac{W}{t} \times t' = \frac{F \times s}{t} \times t' = \left(\frac{Kg - m}{seg} \times seg \right) \]

<3>

Y aquí surge una primera paradoja aparente de las que tanto abundan en la física. Una observación superficial indicaría que e tiene las mismas dimensiones que W, o sea, que la energía es igual al trabajo físico, pero la mecánica del álgebra no refleja la definición operacional. Los tiempos t y t', ambos medidos en la misma unidad, se refieren a dos realidades distintas: t refleja el tiempo requerido para efectuar un trabajo dado (cuán rápido se hace el desplazamiento), mientras t' representa el tiempo durante el cual se ejerce la potencia en cuestión (durante qué lapso trabaja el hombre, caballo o máquina a vapor). La unidad de medida práctica de energía es el kilowatt-hora que equivale a la potencia de un kilowatt ejercida durante una hora.

Si omitimos por ahora la discusión de las distintas unidades en que se puede medir la energía y sus equivalencias (kilowatt-hora, calorías, joules, toneladas equivalentes de carbón, etc), podemos retener la sustancia del modelo físico y evitamos algunas confusiones que quedarán latentes. Podemos imaginar a continuación un trabajo humano muy simple que consista en pura energía, al menos dentro de las simplificaciones de nuestra descripción.

Un hombre adulto y saludable puede ejercer una fuerza respectable; digamos que puede levantar una piedra que pesa 50 kilos. Por tanto, dos hombres pueden coordinar sus esfuerzos para levantar una piedra de 100 kilos. Si ellos levantan la piedra a un metro de altura, efectúan un trabajo físico de 100 kilogramétros. Si se demoran dos segundos en dicha operación, necesitan una potencia de 50 kilogramétros por segundo, o aproximadamente 2/3 de
caballo de fuerza o 1/2 kilowatt. Si, finalmente, repiten esta operación en forma continua y uniforme durante 30 minutos, han desarrollado una energía útil de 1/4 de kilowatt-hora. Nótese que esa energía representa el desplazamiento de 900 piedras de 50 kilos levantadas a un metro de altura. La misma energía teórica se puede obtener quemando 34 gramos de carbón de buena calidad o 20 gramos de petróleo\(^{13}\).

Una simplificación injustificada en los cálculos descritos proviene de no considerar el rendimiento: los hombres necesitan gastar una energía muy superior a 1/4 de kilowatt para levantar las 900 piedras pues el organismo humano es una máquina muy flexible pero de bajo rendimiento, del mismo modo que una máquina a vapor necesitaría quemar mucho más de 34 gramos para ejercer la misma energía útil. Una cifra más realista es probablemente del orden de 200 gramos de carbón. En todo caso, el modelo sugiere bien en primera aproximación la relación entre trabajo humano y energía y además apunta al primer nivel de sustitución del trabajo humano por animales o por máquinas.

Una persona interesada en la actividad de levantar piedras, por ejemplo un constructor, está dispuesto a pagar un salario para que el trabajo de marras se lleve a cabo. Una vez que las piedras están en su lugar definitivo, es muy probable que el sistema resultante tenga mayor valor que el sistema original, pero es imposible distinguir a simple vista si tal trabajo fue hecho por hombres o por máquinas. Naturalmente que la teoría del valor económico supone un contexto social concreto (relaciones de producción) y un grado de desarrollo técnico (fuerzas productivas). Mi observación sugiere la necesidad de no confundir el valor económico en ese sentido con una medida objetiva en el sentido físico.

En nuestro nivel de simplificaciones es obvio sin embargo que un caballo pudo haber levantado las piedras, pero es dudoso
que se pueda por eso afirmar que el caballo ha producido valor. Se podría argumentar que fue necesario que alguien criara, domara y entrenara al caballo y que, en ese sentido el caballo representa capital constante, o valor almacenado, en el mismo sentido que una máquina. Cómo podríamos asociar un valor numérico práctico con dicho valor es algo que dista mucho de ser obvio. Lo que sí está claro es que el hombre puede ser completamente reemplazado por un caballo en el trabajo puramente energético de levantar piedras.

Siempre que una actividad humana tiene un componente energético es posible verificar si ese componente puede reducirse a una fuerza que se desplaza a lo largo de cierta trayectoria; y si tal es el caso, estamos frente a una situación de ejercicios de energía mecánica. Por otra parte, la física ha estudiado con todo rigor los procesos de transformación y equivalencia de las distintas formas de energía: eléctrica, mecánica, térmica, gravitacional, etc. Y aunque dichas manifestaciones energéticas son formalmente equivalentes - de ahí la famosa Ley de la Conservación de la Energía - no siempre es posible pasar de una a otra sin perder algo de energía útil. Esta propiedad de degradación de la energía útil en los procesos reales está condensada en la Segunda Ley de la Termodinámica, ley que está repleta de implicaciones económicas a las que nos asomaremos superficialmente.

Para el desarrollo de nuestro argumento podemos restringirnos al caso de la energía mecánica. En algunas circunstancias el componente energético del trabajo requiere algún ingenio para ser expresado como el desplazamiento de una cierta fuerza. Por ejemplo, un soplador de vidrio ejerce una presión o fuerza por unidad de superficie para desplazar la pared de la burbuja de vidrio que se expande. La misma descripción vale para el experto en primeros auxilios que aplica respiración artificial boca-a-boca. Aunque ambos trabajadores pueden fatigarse, y mucho, normalmente no será la energía el factor principal de su trabajo sino más bien la destreza. Sobre esto volveremos pronto cuando inten-
temos profundizar en la descomposición física del trabajo humano.

Basándonos en la discusión sobre energía mecánica podemos anotar el primer principio general de sustitución del trabajo humano:

1. EL COMPONENTE ENERGETICO DE CUALQUIER TRABAJO HUMANO PUEDE SER IDENTIFICADO Y DESCrito EN TERMINOS FISICOS Y PUEDE SER REEMPLAZADO TOTALMENTE POR ENERGIA HUMANA.

La tabla siguiente da estimaciones de gasto de energía requeridas para distintas actividades, en valores relativos a la actividad más pesada. Nótese que la actividad patrón (aserrar a mano) corresponde perfectamente al modelo mecánico simple de fuerza que se desplaza linealmente.

TABLA 1: REQUISITOS ENERGETICOS DE DISTINTAS ACTIVIDADES HUMANAS

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aserrar (a mano)</td>
<td>100</td>
</tr>
<tr>
<td>Cortar árboles</td>
<td>97</td>
</tr>
<tr>
<td>Trabajar con picota (minas)</td>
<td>80</td>
</tr>
<tr>
<td>Marchar en la selva (fuerzas armadas)</td>
<td>75</td>
</tr>
<tr>
<td>Tala de arbustos (haciendas tropicales)</td>
<td>72</td>
</tr>
<tr>
<td>Regadío (India)</td>
<td>47 - 87</td>
</tr>
<tr>
<td>Construir soportes para techos (minas)</td>
<td>65</td>
</tr>
<tr>
<td>Dar de comer a animales</td>
<td>48</td>
</tr>
<tr>
<td>Albañilería</td>
<td>44</td>
</tr>
<tr>
<td>Ejercicios de maniobras (fuerzas armadas)</td>
<td>43</td>
</tr>
<tr>
<td>Fabricación de máquinas-herramientas</td>
<td>42</td>
</tr>
<tr>
<td>Fabricación de calzado</td>
<td>35</td>
</tr>
<tr>
<td>Sastrería</td>
<td>33</td>
</tr>
<tr>
<td>Cocinar (trabajo doméstico)</td>
<td>24</td>
</tr>
<tr>
<td>Manejar camiones</td>
<td>19</td>
</tr>
<tr>
<td>Descansar sentado</td>
<td>16</td>
</tr>
<tr>
<td>Descansar tendido o durmiendo</td>
<td>12</td>
</tr>
</tbody>
</table>
Entre la afirmación del primer principio de sustitución del trabajo humano y la crisis energética contemporánea hay una larga historia con al menos dos y, probablemente, tres revoluciones industriales. Si uno piensa que "una tonelada de petróleo contiene la misma energía que puede proporcionar una reca de 16.000 caballos durante una hora de actividad" y que diariamente se queman en el mundo alrededor de 6 millones de toneladas de petróleo, además de las otras formas de energía, se comprende que aún en el plano energético puro la máquina ha hecho algo más que reemplazar el esfuerzo humano. El norteamericano medio consume 330 veces más energía de combustibles líquidos que el etíope medio y ello confirma el hecho que la civilización industrial ha amplificado de un modo espectacular las demandas de energía. Para comprender mejor el rol de la máquina en este sentido retomemos nuestro modelo original y volvamos a la operación de cavar hoyos.

Supongamos que es necesario hacer simultáneamente muchos hoyos o una larga zanja que requieren el trabajo de muchos hombres durante un lapso considerable. La idea de desarrollar una máquina excavadora aparece pues en forma natural.

La máquina más simple que uno puede concebir para este propósito consiste en vincular una fuente de energía externa con una herramienta parecida a la que usa el operador humano. Pensemos por ejemplo en una pala neumática en que el aire comprimido suministra parte de la energía que antes aplicaban los músculos del trabajador. De este modo se amplifica la capacidad de trabajo del operario. Si anteriormente el trabajador disponía de una energía e por jornada con la cual cavaba en promedio d metros de un cierto tipo de zanja, existía una relación.

\[
d = k \cdot e \text{ [metros de zanja]}
\]

Aquí k es un factor de proporcionalidad simple. Si, por
otra parte, la pala neumática amplifica la energía del operario en un factor a, probablemente mucho mayor que 1, el rendimiento diario vendrá dado por

$$d' = k \cdot (a \cdot e) \ [\text{metros de zanja}]$$ \hspace{0.5cm} \text{(5)}

En primera aproximación podemos suponer que el trabajador que opera la pala neumática no requiere destrezas adicionales significativas para manipular la nueva energía disponible. Esto no es estrictamente cierto dado que alguien tendría que operar y mantener el compresor, conectar la manguera de aire, abrir y cerrar válvulas, etc. Sin embargo, se puede afirmar que, en general, la ganancia por la mayor energía disponible superará con creces la necesidad adicional de destrezas.

Dentro de las simplificaciones inevitables en todo ejercicio de clasificación, podemos decir que LAS PRIMERAS MAQUINAS SON AQUELLAS QUE AGREGAN UNICAMENTE EL ACCESO A UNA FUENTE DE ENERGÍA NO HUMANA.

Estas máquinas amplificadoras de energía llevan a la primera gran modificación moderna de los requisitos de manos de obra y se pueden simbolizar en el efecto que tuvo la máquina a vapor en la Primera Revolución Industrial. El hecho que aparezca una energía adicional controlable en cantidades tan importantes tiene varios efectos con un saldo neto en producción y empleo bastante complejo.

Por una parte se eliminan aquellos trabajos cuyo rol principal es proveer energía, como sucede en las operaciones de prensado y transporte de materiales entre estaciones de trabajo. Por otro lado, se aumenta la productividad de aquellos operarios, como torneros y tejedores, que se ven descargados de la exigencia de impulsar las máquinas con que trabajan. Piénsese en el telar mecánico comparado con el telar a pedales, o en el torno de alfarero con motor en relación a aquél accionado con los pies.
El primer efecto - la sustitución de trabajo no calificado, puramente energético - puede ser más que compensado por la demanda de mano de obra más calificada generada por la posibilidad de productos estandarizados y más baratos. Es por eso que en la primera fase de la revolución industrial hay una presión sobre las poblaciones rurales para que se trasladen a la ciudad y estén disponibles para la expansión industrial.

De ahí que el efecto económico dinamizador de la energía inanimada haya ocultado por mucho tiempo su impacto en la destrucción del empleo. Si no existieran las máquinas amplificadoras de energía, la energía total disponible sería, en primera aproximación, proporcional al tamaño de la población. Aún si se considera que la energía bruta disponible en los alimentos disminuye drásticamente por el rendimiento fisiológico del cuerpo humano como transformador de energía, y que las distintas actividades mencionadas en la Tabla 1 están afectadas por rendimientos diversos, mientras no se use energía externa, la proporcionalidad entre población total y energía potencial es una buena aproximación.

Es evidente que la energía potencial disponible en una población de tamaño dado es modificada radicalmente por la dinámica industrial. La energía total usada por una sociedad moderna es una función de, a lo menos, la riqueza acumulada y el desarrollo tecnológico. Los Estados Unidos aumentaron 32 veces las energías total consumidas por año entre 1850 y 1975. La figura 1 muestra cómo la curva de consumo de energía se disparó con respecto a la curva de evolución de la población (aún si se considera que la figura distorsiona la escala de energía de modo de disminuir el efecto real. El lector atento no tendrá dificultad en verificar que ya en 1900 la curva energética había dejado muy atrás la curva democrática). En el mismo período la disminución de trabajos intensivos en energía ha sido muy marcada, al punto que actualmente la energía humana suministra menos del 3 por mil de la energía total requerida por los Estados Unidos.
FIGURA 1: POBLACIÓN Y ENERGÍA POR CAPITA

CONSUMO PER CAPITA (KW-H/AÑO) (1965)

USA

35000

INGLATERRA

35000

URSS

18000

1500

NIGERIA

1500

FRACCIÓN ENERGÍA HUMANA

DEMANDA RELATIVA DE ENERGÍA

32

260

213

POBL. MILLONES

150

14

114

9

75

44

4

23

1

1850 1875 1900 1925 1950 1975 2000

EVOLUCIÓN DE LA POBLACIÓN Y DEMANDA DE ENERGÍA EN USA
La misma figura muestra la relación entre los miles de kilowatt-hora consumidos por habitante y por año en diversas sociedades para 1965. Ahí se ve que incluso una economía bastante subdesarrollada como era la de Nigeria, consumía ya 1500 Kw-hr per cápita y no podría haberse provisto más que de una pequeña fracción de esa cifra si hubiera dependido exclusivamente de la energía humana.

Estas tendencias al aumento de la energía específica consumida y a la disminución de la fracción provista por el trabajo humano se reflejan en las curvas representadas en la figura 2. La curva superior de demanda total de energía crece exponencialmente, mientras la curva de evolución demográfica muestra la tendencia a la estabilización asociada con el desarrollo económico. En principio, la energía humana potencialmente disponible corresponde a una curva proporcional a la curva demográfica, mientras la energía humana efectivamente usada sigue una curva que es casi asintótica al eje horizontal.

Si se efectúa un corte en un momento P, típico de una sociedad industrializada, la situación se caracteriza por: i) una elevada demanda total de energía CP; ii) un uso de energía humana muy reducido AP; y iii) una población que crece lentamente con un alto potencial de energía humana BP. Si las cantidades sugeridas por estas ordenadas pudieran ser medidas con algún grado de confianza, se podrían construir índices tales como

\[J = \frac{BA}{AP} \quad <6> \]

indicativo de la tendencia a la destrucción de empleo no calificado, y

\[K = \frac{AP}{CP} \quad <7> \]

que refleja la fracción de la energía total que proviene del esfuerzo humano. Basándose en la información existente, K es del
FIGURA 2: CURVAS TÍPICAS DE POBLACIÓN Y DEMANDA DE ENERGÍA EN UNA SOCIETY INDUSTRIALIZADA.
orden de 0.001 a 0.006 para países muy desarrollados. Para países de economía primitiva, tal como los de la zona sub-sahariana, debe ser del orden de 0.1 a 0.2. La Tabla 2 refleja esta situación.

J parece ser una función bastante más rígida del progreso tecnológico que alcanza valores muy altos (probablemente del orden de 100 o más) para las sociedades muy industrializadas. Si suponemos que $J = 100$, quiere decir que sólo el 1 por ciento de la energía humana potencialmente disponible se aprovecha en realidad y, en consecuencia, a menos que haya trabajo calificado para las otras 99 unidades potenciales, habrá presiones que puedan llevar a un primer tipo de desempleo estructural combinadas con presiones abiertas o subterráneas para la reducción de la población y, probablemente, también con otro tipo de presiones políticas de largo plazo.

En la figura 2 la magnitud CA representa la energía no humana. Ella puede ser suministrada por animales (un recurso todavía importante en África y Asia); mediante el control de algún flujo natural portador de energía cinética (viento, caídas de agua, mareas); o a través de la combustión de materias fósiles renovables o radioactivas. Cualquiera que sea el origen de la energía en cuestión, una parte de ella es aplicada al equivalente de un trabajo humano mediante un aparato que llamaremos motor y que es el encargado de transformar la energía en su forma original en energía mecánica, esto es, en una fuerza que se desplaza a una cierta velocidad durante cierto tiempo. Sea que el motor consista en el caminar de un caballo ciego en toro a una noria, en una máquina a vapor, en un motor diesel o en un motor eléctrico, el fenómeno básico es el mismo y él nos lleva a las dos conclusiones siguientes:

2. LA SUSTITUICION DEL TRABAJO HUMANO COMO FUENTE DE ENERGIA EXIGE EL DESARROLLO DE ALGUN TIPO DE MOTOR; y
<table>
<thead>
<tr>
<th>REGION</th>
<th>Porcentaje</th>
<th>Kc. por Capita x Ann.</th>
<th>Kc. por Capita x Hm.</th>
<th>Consumo</th>
<th>Producción</th>
<th>Kc. Equivalentes</th>
<th>Kc. Equivalentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reino Unido</td>
<td>40%</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>Alemania</td>
<td>30%</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>Italia</td>
<td>20%</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>Francia</td>
<td>10%</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>Espana</td>
<td>5%</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>America del Norte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>America del Sur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>America Central</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notas:*
- La razón de las columnas 4 y 5 de las (columnas 2 + 4).
- Se ha utilizado un factor de conversión de 80 kg carbono equiespesa por año.
- Se ha utilizado una base de una producción máxima por hombre adulto de 2 Kwh por dia.
- Incluye las islas del Caribe, América Central y Venezuela
- Producción de ceano oriental.
- Producción de ceano occidental.

Referencias:
- Cifras basadas en valores medios 1963 - 1965
- Tabla 2: Índices de consumo de energía
3. EL AUMENTO DEL USO DE MOTORES RESULTA NECESARIAMENTE EN UNA O VARIAS DE LAS CONSECUENCIAS SIGUIENTES: DESPLAZAMIENTO DEL EMPLEO A SECTORES DE MAYOR CALIFICACION O DESTREZA, DESEMPEÑO ESTRUCTURAL, PRESION PARA REGULAR EL CRECIMIENTO DE LA POBLACION U OTRO TIPO DE CAMBIOS ESTRUCTURALES POLITICOS (que por ahora dejaremos indefinidos).

En este punto vale la pena retornar al tema que los físicos llaman las máquinas simples. Todas ellas fueron esenciales para las grandes construcciones anteriores a la Primera Revolución Industrial, pero están limitadas por la energía humana que las activa. Así, por ejemplo, una polea compuesta puede permitir levantar un peso mucho mayor que aquel que podría mover un hombre a pulso, pero a costa de efectuar un desplazamiento proporcionalmente mayor. De este modo, el \textit{trabajo} máximo posible (fuerza \times \text{desplazamiento}) se mantiene constante18. Tales máquinas simples permiten así obtener alguna flexibilidad entre los factores que aparecen en las ecuaciones \textless 1\textgreater y \textless 2\textgreater, respetando sin embargo el límite máximo de energía humana disponible.

En paralelo con tales pseudo-máquinas hay otros instrumentos que mejoran la capacidad humana de manipular la naturaleza. Un martillo, un cincel, un alicate, una pala o una picota no se basan principalmente en las propiedades de las máquinas simples de jugar con los factores de fuerza, velocidad y desplazamiento (aunque puedan en parte ser analizadas mediante principios de las máquinas simples) sino que \textit{hacen más eficientes} los instrumentos puramente humanos. ¿Qué le agrega al poder humano original la existencia del martillo? La velocidad de desplazamiento no es mayor que aquélla con que se puede mover el brazo; la \textit{fuerza} total ejercida no es superior a la que el operador puede lograr con sus propios músculos; el camino está limitado también a las restricciones físicas del esqueleto humano. El martillo pues no agrega energía ni tampoco convierte fuerza en desplazamiento o vice-versa. Las propiedades que de él se aprovechan son dos: su dureza que le permite el impacto violento con
superficies agudas y duras y el hecho de canalizar una destreza.

La dureza del martillo, la agudeza del cincel, las mandíbulas del alicate extrapolan propiedades que ya están en el cuerpo humano: brazo, manos, dedos, uñas, etc. Lo mismo podríamos decir de instrumentos tales como el lente de aumento, el microscopio, el telescopio, la bocina para concentrar la voz del locutor, etc.

Las propiedades físicas del ser humano, sus sentidos, pueden a menudo usarse en un contexto particular mediatizados por instrumentos que les permiten ganar eficacia. Un hombre obligado a estar siempre con un martillo en la mano perdería la capacidad de usar sus dedos para coger, girar, apretar, desmenuzar, entrelazar, anudar, acariciar, etc., pero enfrentado a la tarea de unir dos tablas con un clavo, lo hace con eficacia infinitamente más grande con el martillo que con las manos desnudas. Eficacia en este contexto significa la selección o especialización de una propiedad general del ser humano que es amplificada mediante el uso de instrumentos para ciertas combinaciones específicas.

Este aspecto particular de las herramientas e instrumentos, a pesar de su interés conceptual y aún filosófico, no interesa demasiado para este análisis. En efecto, él se refiere a un dato tan primitivo de la realidad, a saber, las propiedades biológicas primeras de la interacción o "interfase" entre el hombre y la naturaleza, que no parece tener gran capacidad explicativa para situaciones de desarrollo tecnológico. Para explicarlo desde un ángulo más dramático tomemos otro ejemplo: el hecho que la dureza de los objetos y de los órganos humanos sea un determinante de la interacción entre ellos en tanto que la radioactividad no lo sea, hace que instrumentos tales como el martillo sean útiles, posibles y necesarios aún en las culturas primitivas mientras que la radioactividad es descubierta a través de manifestaciones indirectas sólo en un estado muy avanzado del desarrollo científico.
Al fijar la atención en herramientas más simples que las máquinas elementales de energía pura nos vimos obligados a una disgresión incómoda para dar cuenta de las categorías más primitivas que ligan las propiedades biológicas del hombre con las propiedades de la naturaleza, pero también nos encontramos con el concepto de destreza. Este nos obligará a un análisis más detallado tanto de las herramientas cuanto de las máquinas que se desarrollaron una vez que la energía inanimada estuvo disponible en grandes cantidades.

Descomposición de las Destrezas

Para acercarnos a esta cuestión existen dos caminos. Partamos por reflexionar sobre las destrezas tal como se presentan en actividades en que no participa la máquina. El caso más obvio que se nos viene a la mente es el de la habilidad artística. El buen pintor, el músico profesional o la bailarina consumada hacen algo que los mortales corrientes no pueden hacer. Para ello, cultivan sus talentos naturales con ejercicios y estudios que les permiten efectuar las tareas más difíciles con la mayor naturalidad. A primera vista nos parece imposible que una máquina sea capaz de reemplazar al artista en su actividad creativa. Luego trataremos de entender mejor los límites de tal imposibilidad.

La destreza del artista sin embargo es demasiado compleja para permitirnos un análisis directo. Incluso el artesano de alta calidad, sea ebanista, tallador, sastre o maestro cocinero, hace demasiadas cosas juntas como para entenderlas sin más. No obstante, el salto histórico de la producción artesanal a la manufactura, proceso que tanto interesó a Adam Smith y a sus contemporáneos, se basó en la descomposición de las complejas actividades del artesano en múltiples actividades simples. Entre el ceramista artesanal que selecciona y prepara sus materiales, que diseña y produce sus propios modelos y moldes, que le da forma a las piezas, las somete a los procesos térmicos necesarios,
las decoración y termina, y la fábrica de porcelanas en que cada una de estas tareas ha sido dividida en muchas operaciones elementales, se lleva a cabo una primera descomposición de las destrezas.

Si tomamos una operación elemental cualquiera, digamos el pintado de una franja sobre un plato antes de la cocción final, el operario industrial repite indefinidamente el mismo ciclo: toma el plato de la mesa de preparación; lo pone sobre el tornillo; unta el pincel; hace girar el tornillo; aplica el pincel al borde del plato; retira el pincel; lleva el plato a la mesa de trabajo terminado, etc.

Aquí hemos descompuesto una destreza elemental en un programa que reduce dicha destreza a una mera secuencia de información.

De hecho los ingenieros industriales de la tradición de Fayol, Taylor y los Gilbreth, al descomponer las actividades fabriles en elementos progresivamente más pequeños fueron acercándose a miniprogramas de información que podían ser realizados por una máquina.

Hay que cuidarse mucho en este punto de no generalizar y reducir el total de cualquier destreza a mera información. Más aún, hay que precaverse de dar al concepto - aún indefinido - de información un contenido mágico que sirve para bloquear toda indagación ulterior.

Lo que hemos insinuado sobre las destrezas nos permite volver al excavador del ejemplo inicial que dispone ya de una fuente de energía adicional, digamos aire comprimido, y preguntarnos cómo podríamos mejorar y quizás mecanizar sus destrezas. Se pueden especificar algunas propiedades de la máquina que se desea:

- que alcance una mayor profundidad que el operario con pala manual;
- que sirva a la vez para soltar la tierra y removerla;
- que se pueda controlar a distancia;
- que tenga una cabina para proteger al operador.

La lista se podría continuar pero por ahora basta la especificación anotada. A partir de estas propiedades el diseñador concibe distintas soluciones posibles que a su vez se reflejan en un programa real o simulado de las operaciones que, en el uso práctico, debieran realizar el obrero-operador y la máquina misma.

Dicho programa no diferirá en nada esencial del análisis de tareas que efectuaría un discípulo de Gilbreth mediante estudios de tiempo y movimientos. Estos últimos contendrán un portador energético, ya suficientemente discutido, y un componente de destreza que, ahora sí, nos atreveremos a llamar componente informático.

Continuando con nuestro método analítico cauteloso en el que identificamos un componente dentro de un conjunto pero no reducimos todo el conjunto a dicho componente, diremos que en el concepto general y vago de destreza hay unos elementos más precisables que llamaremos información, quizás de varios tipos, y hay probablemente otros que no se pueden reducir a pura información.

La información no es un concepto mucho más simple que el de destreza; sin embargo, en este caso es posible aprovechar los progresos hechos en varias ciencias naturales para producir definiciones operacionales y teoremas de composición\(^{21}\). A partir de hechos extremadamente simples, como la constatación de que todo acto de información está asociado con la percepción de un cambio, se han generado métodos muy fecundos llenos de implicaciones prácticas y teóricas. El cambio más elemental imaginable puede ser representado por la unidad mínima de modificación que un observador\(^{22}\) puede detectar. Si el observador tiene al frente un ábaco, cada vez que mueve una cuenta se produce un cambio elemental, lo mismo, si dispone de un conjunto de ampolletas:
cada vez que una de ellas se enciende o se apaga hay un cambio elemental; o cada vez que cambia un número cualquiera de una serie de números, o una carta cualquiera de una baraja de naipes.

Aquí no se dice que estos cambios sean información, sino sólo que este tipo de modificación elemental percibida puede usarse como medida de un tipo de información que llamaremos señal o mensaje o información cibernética. Lo que sí queda claro es que la posibilidad del mensaje "cuando yo enciendo la luz cierre usted la puerta", se basa en que la información señal se puede descomponer en cambios elementales susceptibles de ser medidos.

Así, si uno considera cualquier parte aislada de la naturaleza como un sistema que contiene potencialmente información, y mira al sistema en un instante determinado como si estuviera congelado, cualquier cambio del sistema se puede usar entonces para transmitir información (reiterando las cautelas respecto del observador que percibe).

Si además uno acepta que el cambio más elemental en el campo de percepción puede inducir el cambio más elemental en el estado de conocimiento del observador, entonces empezamos a entender a lo menos un aspecto de las destrezas en términos de secuencias ordenadas de información. Y a dicho cambio elemental lo llamaremos desde ahora bit.

Un ejemplo simple de un sistema de información puede construirse sobre la base de un banco de n ampolletas eléctricas idénticas cada una de las cuales puede estar encendida o apagada, independientemente. Si se acepta que cada configuración posible de ampolletas encendidas y apagadas puede corresponder con un mensaje pre-acordado, entonces el número total de mensajes es 2^n. Nótese que aquí no decimos nada todavía sobre la información de los mensajes.
Para reiterar el rol del observador, recordemos que el número de configuraciones de señales distintas depende a la vez de la naturaleza del sistema y del observador. Si cada luz pudiera estar en uno cualquiera de los siguientes estados "encendida-verde", "encendida-roja", "encendida-azul" o "apagada", una persona de visión normal podría distinguir hasta 4^n diferentes mensajes; un enfermo de protanopía (ceguera al color rojo) sólo podría captar 3^n configuraciones; y para un ciego, el sistema sería perfectamente irrelevante. Este comentario sobre el carácter del observador está más relacionado de lo que a primera vista pudiera parecer con la información y las destrezas en el trabajo. Los mensajes deben ser expresados a través de perturbaciones que puedan ser absorbidas en el campo sensorial e intelectual del trabajador.

Así, el concepto de señal tiene la ventaja de que puede ser usado para medir con toda precisión el contenido potencial de cantidad de información (bits) de un sistema o, en otras palabras, su complejidad.25

Hay además otro aspecto en el cual estas ideas sobre información de señales son importantes. Cualquier sistema, aún el más elemental necesita que se le entregue alguna energía para cambiar la configuración. El juego de luces del ejemplo anterior requiere a lo menos energía suficiente para que una luz sea encendida o apagada antes de llegar a una nueva configuración. De este modo, si uno pretende aumentar el contenido de información de un sistema, está obligado a gastar algo de energía.26

Si los cambios en el campo de percepciones pueden ser interpretados como mensajes elementales, entonces ellos pueden aprovecharse para transmitir órdenes e instrucciones. Así, un conjunto de 3 luces puede estar relacionado con otro conjunto de tres puertas que un solo portero puede abrir o cerrar de acuerdo a las configuraciones del sistema de luces y según un código pre-establecido con su supervisor. En este contexto, se puede hablar
de mensaje para representar cualquier enunciado perfectamente inequívoco entre el emisor y el receptor. El mensaje "abrir puerta 2" es inequívoco si "abrir" es una operación precisa y si la "puerta 2" está claramente identificada.

Y si se establece una secuencia coherente de tales mensajes se obtiene lo que se llama un programa. Tales mensajes requieren, además de un sistema que los pueda registrar como configuraciones distintas, los instrumentos físicos (seres humanos, herramientas, regímenes o robots) que provean la posibilidad de realizar el programa.

El operador de la excavadora en nuestro ejemplo original, instalado en la cabina de la máquina, suministra el programa (almacenado en su cerebro), así como una parte de los nexos instrumentales (sus pies y manos con los cuales acciona palancas y pedales), y los circuitos de control por retroalimentación (mediante la observación continua de la operación) que permiten detener la máquina cuando existe el peligro de romper la pala contra una plancha de acero o herir a un niño que ha caído accidentalmente en la zanja.

En la medida en que un mensaje dado está determinado a través de cambios elementales precisos (bits), el "significado" de las señales no tiene ninguna importancia y, en realidad, no tenemos todavía ninguna necesidad de hablar de significado. Todo el sistema, incluyendo el emisor, el canal portador de mensajes, el receptor y el instrumento realizador, son parte de un sistema cibernético cuyo comportamiento se rige por las leyes de la regulación y el control por retroalimentación. Podemos quedarnos por ahora fuera del campo semántico.

En nuestro ejemplo básico, el obrero que opera la pala neumática elemental estaba usando solamente un amplificador de energía. Si la excavadora para operación a distancia descrita a continuación hubiera carecido por completo de elementos de con-
trol y hubiera requerido una decisión humana para iniciar, orientar y detener cada movimiento, también se habría tratado de una máquina trivial con un amplificador de energía. Pero si además está dotada de circuitos de control para detención automática en caso de sobrecarga, sobrecalentamiento, descenso del nivel de aceite o desgaste del cable principal, entonces se trata de una máquina cibernética. En este caso, claro está, la especificación cibernética se ha elegido intencionalmente a un nivel elemental para la claridad del ejemplo.

Una máquina cibernética, aún en su expresión más elemental, tiene la capacidad de desarrollar algunas destrezas además de proveer los amplificadores de energía característicos de las máquinas con motor. Así, por ejemplo, un motor eléctrico con un interruptor térmico contra sobrecargas contiene la información "no operar por encima de tal temperatura límite" y la destreza "detenerse porque se está llegando a ese límite". Los mecanismos de este tipo a menudo de una complejidad de diseño y construcción enorme, constituyen el objeto de los estudios de control automático que es una rama especial de la cibernética.

Las máquinas cibernéticas básicas requieren a lo menos dos especificaciones generales: un campo de contenido de información, como el provisto por el interruptor térmico o el regulador de la máquina a vapor; y una secuencia ordenada de señales. El telar de Jacquard (patentado en Francia en 1804) fue la primera máquina que permitió automatizar secuencias largas de operaciones mediante la relación entre el movimiento de tablillas perforadas y las distintas posiciones de las piezas del telar. De esa idea de secuencia ordenada tomó Babbage la inspiración para sus diseños de máquinas de computar, y después Hollerith la idea de la tarjeta perforada que hasta hoy se usa en los sistema de procesamientos de datos.

Según el nivel de desarrollo de los respectivos programas cibernéticos y su combinación con amplificadores de energía y con
terminales instrumentales de manipulación (lo que antes llamamos interfase entre el hombre y la naturaleza), existen distintos tipos de maquinarias o sistemas cibernéticos:

i) máquinas automáticas o con regulación por retroalimentación, tales como el excavador descrito anteriormente o un automóvil. En este caso el operador debe supervisar la operación contínuamente e intervenir a menudo aprovechando eso sí, la información que le entregan los instrumentos de la misma máquina (ángulo del volante, velocímetro, termómetro, fusible, espejo retrovisor, etc.);

ii) máquinas y sistemas programables, tales como el telar de Jacquard y los controles de calefacción doméstica con relojes. La máquina sigue una secuencia fija de operaciones. Los computadores de gran capacidad han agregado mucha flexibilidad a estos sistemas al aumentar la velocidad de cálculo, la capacidad de almacenamiento de información y el acceso a grandes distancias. Las centrales eléctricas, las refinerías de petróleo y casi todas las grandes plantas de procesos químicos contienen muchos ejemplos de estos sistemas que no necesitan supervisión contínua del operador humano. En realidad este tipo de soluciones ha llevado a los desarrollos industriales más intensivos en capital y estos sectores productivos usan muy poca mano de obra, altamente calificada;

iii) los robots combinan las ventajas de los dos tipos anteriores con mecanismos delicados y precisos para reproducir, imitar o reemplazar las acciones humanas en lo que hemos llamado antes interfase hombre-naturaleza. Aunque en este terreno los datos cambian muy rápidamente, en 1978 existían 2.000 a 3.000 robots en las industrias norteamericanas y su población crecía al ritmo de 125 a 150 unidades por mes (lo que es muchísimas veces el ritmo de crecimiento de la población humana).
Si estos ejemplos y clasificaciones se profundizan, como se está haciendo indispensable debido a la explosión de los microprocesadores, se llega a la conclusión de que aquella parte de las destrezas humanas que se puede expresar como información cibernética es perfectamente reemplazable por máquinas y que tal proceso de reemplazo se está dando de hecho de una manera muy intensa y rápida. Las consecuencias de este proceso no son fácilmente analizables y la confusión en este terreno es todavía muy grande para sacar conclusiones muy dogmáticas. No es fácil por ejemplo comparar, como lo hicimos en el caso de la energía, la fracción potencial de información total que sigue siendo procesada por agentes humanos aunque la literatura empieza a sugerir cifras en ese sentido.30

La energía máxima que un hombre puede entregar en un día tiene un límite bien preciso (no puede exceder las 1000 kilocalorías) y, por ende, una población dada también produce una cantidad claramente acotada de energía humana. El número de operaciones elementales que el cerebro humano puede hacer por día es también finito pero, además de ser muy grande, es difícilmente nedible.31 Más aún, la velocidad e intensidad de reemplazo del componente informático del trabajo humano depende, probablemente mucho más que en el caso de la energía, del contexto social-económico-tecnológico y político. En la figura 3 se sugiere de una manera muy tentativa un modelo de evolución posible del empleo asociado con niveles de destreza básica en una sociedad industrial. Ella pretende apenas dar una visión cualitativa de la evolución de las destrezas asociadas con información de señal y su reemplazo por máquinas cibernéticas y robots.

El punto A corresponde a las primeras etapas de la revolución industrial, cuando hay sólo motores y destrezas humanas. En B se han incorporado máquinas automáticas elementales, como el telar de Jacquard, los reguladores de las máquinas a vapor y mecanismos de reloj. Al llegar a C el inventario total de des-
FIGURA 3: LA EVOLUCION DE LAS DESTREZAS HUMANAS Y LAS MAQUINAS CIBERNETICAS

DESTREZAS TOTALES
(HOMBRES Y MAQUINAS)

E31

DESTREZAS HUMANAS
POTENCIALES

C3

C4

D3

D4

E4

DESTREZAS HUMANAS
EFECTIVAS

C2

D2

E2

TIEMPO

A1

B1

C1

D1

E1
trezas humanas para actividades productivas está alcanzando su máximo y hay un desplazamiento hacia destrezas superiores (que examinaremos después) y que se puede asociar en general con información avanzada. Es probable que los Estados Unidos y Europa hayan alcanzado esta etapa a fines de los años cincuenta y comienzos de los sesenta. Se puede colegir una pérdida importante de destrezas industriales (C_4, C_2) que es parcial o totalmente compensada por el desplazamiento hacia actividades inducidas o de servicios (medios de comunicación, publicidad, esfuerzos de ventas) que emplean gente capaz de manipular información avanzada. D corresponde a un momento en que el desempleo de mano de obra calificada es grande y en que la razón $D_4/D_2 /D_3/D_2$ es también grande. A estas alturas se presentan problemas de decadencia industrial y falta de competitividad y el desempleo estructural es una posibilidad muy concreta. De acuerdo a los indicadores de los últimos años, Gran Bretaña y quizás otros países de Europa podrían estar llegando a esta fase.

Podemos resumir la discusión sobre las destrezas básicas y la información cibernética en las dos conclusiones siguientes:

4. EL TRABAJO HUMANO PUEDE TENER UN CONTENIDO MAYOR O MENOR DE INFORMACION-SEÑAL Y TAL CONTENIDO PUEDE SER REEMPLAZADO COMPLETAMENTE POR UN SISTEMA ARTIFICIAL QUE SIGUE UN PROGRAMA CIBERNETICO.

5. LA DIFUSION DE LAS MAQUINAS CIBERNETICAS, EN PARTICULAR LOS ROBOTS, TIENE NECESARIAMENTE QUE RESULTAR EN UNA O VARIAS DE LAS CONSECUENCIAS SIGUIENTES: EL DESPLAZAMIENTO HACIA ACTIVIDADES DE DESTREZAS SUPERIORES, DESEMPLEO ESTRUCTURAL O PRESIONES PARA REGULAR EL CRECIMIENTO DE LA POBLACION, U OTRO TIPO DE CAMBIOS ESTRUCTURALES POLITICOS (que por ahora dejamos indefinidos).
Hay quienes empiezan a plantear la necesidad de disminuir el trabajo y aumentar el valor social del ocio para responder a esta tendencia a la destrucción del empleo. Este planteamiento dentro de los paradigmas del capitalismo parece imposible de sostenerse por mucho tiempo, pero analizar esto en detalle nos alejaría demasiado de nuestro objetivo principal.

Hasta aquí parece que la energía y la información cibernética fueran los ingredientes principales (aunque no necesariamente los únicos) que provienen del trabajo humano y qué se requieren para la producción de bienes. Aunque el lector vea estas cuestiones como muy distantes de la problemática del desarrollo, me parece fundamental este esfuerzo de penetrar en la realidad de las dimensiones sociales básicas antes de hablar de desarrollo.

Esto se entiende mejor si se piensa hasta qué punto el desarrollo (y también el empleo y desempleo) han sido ligados al dinamismo económico provisto por la industria.

Antes de pasar a lo que hemos llamado formas de información avanzada, parece importante examinar el proceso de producción económica en relación al reemplazo de la mano de obra y a los conceptos de energía e información. Quizás podamos de ese modo reforzar algunas de las iniciativas originales y aún encontrar puentes con categorías más naturales dentro de la tradición de la ciencia económica.
El Proceso Productivo y la Sustitución de la Mano de Obra

Los economistas clásicos hasta el mismo Marx se preocuparon de conceptualizar las bases de la economía a través de lo que llamaron la satisfacción de necesidades mediante el valor de uso de los objetos. En un párrafo muy citado Marx habla de "la naturaleza de esas necesidades, sea que ellas provengan del estómago o de la imaginación, no afecta la cuestión de fondo" 33/1. Sin embargo, tanto las necesidades como los valores de uso adquirieron posteriormente una cierta aureola metafísica al fracasar los economistas en sus intentos de dar definiciones operacionales o incorporar tales conceptos a las explicaciones prácticas de su disciplina (dificultad esta última obvia, dentro de los marcos de análisis capitalistas).

Frente al valor de uso, el concepto de valor de cambio aparecía mucho más fructífero dado que podía intentarse vincularlo -aunque en general sin éxito- a cantidades medibles en dinero y relacionadas de algún modo con costos y precios. El valor de uso devino así una especie de ficción romántica que no permitía ningún análisis en componentes tangibles. Más recientemente, y en relación con el interés renovado, no siempre muy profundo, en las necesidades básicas, se ha vuelto a poner de moda hablar de valores de uso, al menos como un modo sugerente de referirse a la propiedad de los bienes de ser útiles. Debido a los problemas de circularidad de las definiciones y a la obsesión positivista de eliminar del discurso científico las opciones valorativas o normativas, lo que la tradición anglo-sajona llama "value-free science", los economistas han sido muy reacios a aceptar un concepto de utilidad (en el sentido de valor de uso y no de beneficio económico) que no sea idéntico con la disposición a pagar un precio dado. A pesar de lo precario de este raciocinio, pongo evitar una polémica que se ha demostrado estéril durante demasiado tiempo e intentar examinar la cuestión del uso o utilidad en un sentido físico.
Para ello limitémonos por ahora a lo que Marx llama "las necesidades que provienen del estómago" pues todavía no hemos examinado los tipos de información que pueden servir para darle un vehículo físico a las de la imaginación, aunque espero intentarlo más adelante.

Lo que ningún economista se ha preguntado es por qué las necesidades vienen del estómago en lugar de venir del pistilo o de las branquias. Con esto quiero apuntar a que las cosas útiles son útiles para alguien y, en el campo de nuestro interés, ese alguien es un ser humano. Los objetos, las mercancías, los procesos y aún los conocimientos son útiles sólo para un observador con una cierta historia y en un cierto entorno social. La excavadora más perfecta es inútil, excepto para propósitos de intercambio, para alguien que no necesite abrir una zanja o que no sepa cómo hacer funcionar la máquina. Los bienes de consumo también suponen un observador con historia, cultura e intenciones. Para un judío las ostras prácticamente carecen de valor de uso, lo mismo que un disco para un sordo o una filmadora para un ciego.

Así el observador que juzgará la utilidad se mueve dentro de un marco determinado por su interfase con la naturaleza (estómago y no clorofila, por ejemplo) por su situación histórico-cultural y por sus características individuales. Una vez que este marco está especificado, el observador se comportará de un modo coherente, al menos estadísticamente, respecto de valores de uso y prioridades. Este postulado está implícito en los intentos de formalizar los mecanismos de elección y decisión, tales como los de la teoría de juegos. Está también implícito en cualquier esfuerzo por describir finamente los comportamientos racionales.

Hagamos abstracción una vez más de los factores que complican nuestra descripción en su formulación más elemental y restrínjámonos a nuestro observador humano con su envoltura de piel y su interfase con la naturaleza. Aún así, estamos frente a un organismo vivo.
de alta complejidad, que sobrevive sólo si tiene éxito en mantener el flujo de energía indispensable para que la organización no se desintegre34. Sin embargo, para asomarnos a este problema tenemos que alejarnos radicalmente de todos los conceptos familiares a los economistas. Una organización compleja es una configuración improbable en el sentido que ni una orquesta sinfónica resulta del encuentro accidental de unos cuantos músicos ni un buen equipo de fútbol son once jugadores tomados al azar35. Y ni una rosa ni un ser humano son moléculas de proteínas enlazadas por fluctuaciones casuales. La Segunda Ley de la Termodinámica, que es tan absoluta como la Ley de Gravedad y mucho más que cualquier ley del valor o del mercado que se pueda concebir, requiere inexorablemente que un sistema vivo disminuya localmente la entropía para retener su organización. Por otro lado, la única manera de lograr concentraciones locales y estables de baja entropía consiste en el establecimiento de flujos favorables de energía. La baja entropía equivale, como ha sido descrito por muchos autores36, a una organización o configuración improbable y, como tal, un sistema que es el resultado de un cierto flujo y almacenamiento de información. Gran parte de la biología moderna está orientada a explicar cómo los sistemas vivos construyen su propia organización y cuáles son los mecanismos para conservar y transmitir la información indispensable para que esa organización se reproduzca.

Cuando el sistema vivo muere, se inicia el rápido e irreversible proceso de desintegración y se vuelve a la tendencia natural, al aumento de la entropía.

Hemos visto pues, que los tres elementos indispensables para la supervivencia del ser vivo son los mismos que habían aparecido en la base de nuestro análisis del trabajo, a saber: interfase hombre-naturaleza, flujos de energía, manipulación de información cibernética.

El sistema vivo del observador puede absorber energía en la forma de carne, por ejemplo y no de carbón o leña. La complejidad
biológica exige insumos con una estructura bien particular compatibi-
ble con la naturaleza de la interfase hombre-entorno natural. Por
encima de esta interfase biológica, el desarrollo histórico-cultural
impone todavía restricciones adicionales de transmisión y al-
macenamiento de información (aunque aquí nos estamos acercando a
las areras movizadas). En todo caso, es obvio que la carne cocida
es más organizada e improbable que la carne cruda y que normalmen-
tre requiere un flujo controlado de energía por parte del cocinero.
A fortiori, un guiso particular, como el boeuf bourguignon es toda-
vía más improbable que la pura carne cocida.

Aquí están las necesidades "que vienen del estómago" descritas
en la coherencia radical de las restricciones biológicas, históri-
cas y culturales del hombre, y no condensadas en un término tan ge-
neral y abstracto como valor de uso. Y por esta misma pista pode-
mos llegar a entender por qué son los flujos de energía y de informa-
mación los que forman los ingredientes básicos con que hemos descri-
to el trabajo humano, el solo generador de valor de cambio en el pensa-
miento marxista, que revela así propiedades insospechadas de la
"realidad".

El entorno tal como es encontrado por el ser humano es una con-
figuración muy probable. En realidad, lo que lo constituye no es
sólo probable, es una certeza. Desde un punto de vista consomológico
genral, el agua puede ser una estructura muy improbable; pero en
la superficie de la tierra ella abunda lo suficiente para que el
hombre pueda encontrarla casi siempre sin gran dificultad. En la
medida en que el hombre ha aprendido a batírselas con su entorno,
ha aprendido también a producir configuraciones más improbables.
Un coñac de alta calidad tiene una probabilidad muy baja en el sen-
tido que requiere una secuencia muy larga y compleja de hechos no
casuales para llegar a existir: un tipo particular de suelo, clima
y variedad de sarmiento deben ser combinados en un proceso de cul-
tivo delicado, para después efectuar la vendimia, destilación y
guarda en condiciones muy precisas y controladas. Todo experto en
organizaciones sabe que sólo una organización suficientemente rica puede manejar situaciones y problemas de un nivel de complejidad dado. A su vez, la organización compleja está constituída por una estructura (improbable) y cuidadosamente diseñada de componentes y relaciones entre esos componentes por la que circula un flujo muy bien controlado de información.

Al igual que en el ejemplo del coñac, los productos útiles (o con alto valor de uso) corresponden a estructuras improbables, altamente organizadas, aún aquéllas que, como el agua o el aire, no son escasas en el sentido que determinan a priori el carácter de la interfase hombre-naturaleza. Evidentemente, hay aquí una descripción que corresponde a un círculo esencial y no vicioso: el hombre se encuentra con una naturaleza con la que se vincula a través de lo que hemos llamado "interfases", que están ahí "por construcción", y necesita para su propia organización estructuras altamente organizadas que él mismo produce inyectando energía e información a la naturaleza que lo rodea. El mismo observador que juzga la utilidad, manipula la información que crea los productos escasos que son útiles.

El mismo principio que establece que la producción de información exige un cierto gasto de energía, afirma que se requiere una alimentación de energía para mantener un sistema abierto organizado. Los biólogos saben que los sistemas vivos se mantienen mediante la actividad de su propia organización, lo cual implica que deben hacer un trabajo permanente para mantener un bajo nivel de entropía; y todo esto es posible sólo si: (i) hay un flujo de energía hacia el sistema (o sea, el sistema es necesariamente abierto); y (ii) hay un aumento simultáneo de entropía en alguna parte del entorno.

La figura 4 es una representación esquemática del proceso de producción en el que una cadena de entradas de energía y de información resulta en una secuencia de configuraciones cada vez más improbables. En este sentido, un lingote de cobre es una configuración...
FIGURA 4: UN SISTEMA DE ALTA ENTROPIA MODIFICADO POR FLUJOS DE ENERGÍA ORIENTADOS (INFORMACIÓN) RESULTA EN UN PRODUCTO UTIL
mucho más improbable que una pila de mineral cuproso, el que a su vez es más escaso, o sea más improbable que la arena común. Más aún, un alambre de cobre es más improbable que el lingote y un calentador de agua que usa el alambre como uno de sus varios componentes, es todavía más improbable que el alambre solo.

Hemos completado así la descripción en una primera fase, bastante simplificada, del proceso de valorización económica relacionando la producción de configuraciones útiles con la satisfacción de necesidades humanas. Para ello hemos requerido principalmente los conceptos de energía e información cibernética y algunos teoremas sobre el comportamiento dinámico de sistemas complejos. Nos hemos acercado para nada todavía a los niveles superiores del proceso de valorización o del control de las organizaciones productivas o sociales, que requieren niveles también superiores de información.

La información cibernética de que hemos hablado hasta aquí es susceptible de ser incorporada en un programa sintáctico, equivalente a una secuencia de operaciones algebraicas, dado que los símbolos son usados únicamente para denotar objetos y para indicar operaciones válidas. Dicha información no plantea el problema semántico o del significado.

Podemos resumir el análisis precedente en la siguiente conclusión general:

6. UNA TRANSFORMACION DE MATERIAS PRIMAS EN PRODUCTOS TERMINADOS QUE PUEDA REPRESENTARSE EN SU TOTALIDAD MEDIANTE "ENTRADAS" de energía e información cibernética, PUEDE SER REALIZADA COMPLETAMENTE POR MAQUINAS AUTOMATICAS.

Se puede plantear la interpretación económica de que tales máquinas contienen un valor-trabajo almacenado en ellas, pero aún si tal interpretación es válida, una vez que ellas están instaladas y produciendo, no es posible detectar ninguna diferencia prácti-
tica entre la producción completamente automatizada y la otra en que intervienen seres humanos.

¿Por qué entonces no se ha reemplazado todo el trabajo humano que se puede descomponer en energía e información cibernética? Pienso que esta pregunta no tiene una respuesta simple pero que uno puede aproximarse a varios planos de respuestas posibles.

Desde el punto de vista de la lógica interna de la producción, todavía hay muchas situaciones en que el trabajo o mano de obra es más barato que el sustituto mecánico. Toda la simplificación ideológica que ha definido sectores industriales intensivos en mano de obra y que propicia la migración de esas industrias hacia la periferia de bajos salarios, se basa en esta relación de costos y va a seguir teniendo éxito mientras el control de las inversiones tenga carácter transnacional y las organizaciones de trabajadores estén restringidas por las fronteras políticas de los estados.

También hay que tomar en cuenta que el desarrollo tecnológico requerido para la automatización avanzada es muy reciente. Los robots verdaderamente eficientes y flexibles dan de los últimos diez años. Sin embargo, las perspectivas son bastante graves para la demanda de mano de obra y el progreso en los microprocesadores, aún si uno toma una cierta distancia a las reacciones más histéricas, encierra un peligro concreto muy serio.

Desde otro ángulo, el circuito macroeconómico completo de la producción, circulación y consumo está fuertemente vinculado al carácter de la distribución del ingreso. El salario de los trabajadores, especialmente en los países desarrollados, es un factor importante de la demanda efectiva. También en este plano hay muchos indicadores de que la producción capitalista se orienta cada vez más decididamente hacia la creación de productos para los sectores de altos ingresos, prescindiendo en lo posible de la demanda periférica.
Por encima de estas consideraciones, más o menos técnicas, está por supuesto la razón ideológica. Un sistema regulado principalmente por la maximización de la acumulación y de la utilidad no tiene ninguna razón, aparte de los argumentos técnicos ya señalados, para mantener altos niveles de empleo mientras pueda conservar el control político y policial. De hecho, la tendencia a la destrucción del empleo en el capitalismo moderno es incluso mayor que la tendencia hacia la estabilidad y aún erosión de la población, como lo prueban los altos niveles de desempleo que coexisten con niveles de población estancados o en descenso.

Además, el capitalismo contiene motivaciones ideológicas inducidas que refuerzan su interés en la destrucción del empleo. Las versiones fascioides que se han implantado en la periferia capitalista subdesarrollada, especialmente en el Cono Sur Sudamericano, se refugian en la ideología de la seguridad nacional para controlar sus propios pueblos mientras entregan todo el control económico a los centros de decisión internacional. En forma análoga se da la tendencia cada vez más abierta en las economías más estancadas de Europa a disminuir el gasto social, especialmente el que protege contra el desempleo, mientras se aumentan los gastos policiales y militares; se asegura así la lealtad de estos sectores a los grupos dominantes, y se preparan los recursos técnicos para la represión que el desempleo estructural irá haciendo más indispensable.

Las economías que aceptan un alto grado de planificación centralizada tienen por supuesto una estrategia completamente distinta frente al desarrollo tecnológico, o desarrollo de las fuerzas productivas según la nomenclatura marxista. En tal caso la productividad, el aumento del consumo y las mejoras en las condiciones de trabajo deben evolucionar en forma coordinada para mantener el empleo pleno.

Los países de la periferia capitalista, por contraste, han sido convencidos de que la única alternativa de desarrollo es atraer
la inversión transnacional y ésta sólo se interesará en trasladar actividades intensivas en mano de obra si se le dan garantías de bajos costos, disciplina laboral (eufemismo para designar la represión a las organizaciones de los trabajadores) y libertad de remesas de utilidades.

Niveles Superiores de Destrezas

Al intentar analizar aspectos de las destrezas que no son claramente reducibles a flujos de energía o de información-señal o cibernética, uno se encuentra con serias dificultades conceptuales. Estas van desde las teorías lingüísticas que discuten cuestiones de significado, estructura gramatical y otras, hasta las que se refieren a niveles de acción que no tienen relación con problemas de significado sino con el uso práctico del lenguaje. No es del caso entrar en una polémica que seguramente tendrá consecuencias muy importantes en el futuro cercano pero que obliga a alejarse demasiado de las cuestiones que se pretende investigar aquí en una primera aproximación un tanto burda.

Inicialmente pensé que, a pesar de sus cabos no resueltos, Attali ofrecía una perspectiva interesante con su clasificación de la información superior en información significante (o semántica), información simbólica (o semiótica) e información relacional. Esta última sin embargo parece no responder a ninguna definición operacional, ni siquiera a descripciones heurísticas suficientemente sugerentes, y pienso que debe ser abandonada. En su reemplazo, y con el objeto de tratar los fenómenos de dirección política y las normas más generales de funcionamiento social, considero mucho más fértil y preciso el concepto de "acto discursivo" en la forma desarrollada por J. Searle.

Respecto de las informaciones significante y simbólica, ambas plantean serios problemas para ser consideradas categorías precisas de análisis científico. Los lingüistas y cibernéticos que han
estudiado fenómenos tan complejos como la traducción automática \(^{45}\) o la computación con cadenas lingüísticas complejas \(^{46}\) no han llegado a conclusiones definitivas sobre el manejo mecánico de los significados, ni tampoco sobre las diferencias estrictas entre significado y símbolo.

Hecha esta aclaración, me arriesgaré a usar las sugerencias de información significante y simbólica con una intención heurística \(^{47}\).

La información semántica, signo o discurso utiliza el lenguaje no sólo para denotar nombres y operaciones válidas sino para transmitir un significado que sólo tiene sentido o eficacia entre dos interlocutores que coparticipan en algún grado del mismo contexto cultural e histórico. La afirmación "en caso de emergencia, use su propio criterio" carece de todo contenido práctico a menos que "usar su propio criterio" pueda ser un juicio validado a posteriori. Si la emergencia se presenta y la decisión no corresponde a las expectativas, el juicio "en tal caso su decisión fue claramente inadecuada" puede lograr el acuerdo de los interlocutores. Este diálogo no puede ser reducido a información cibernética, a menos que haya un programa que ha preclasificado todas las posibles situaciones y reacciones, o sea, que ha vaciado de contenido el juicio sobre uso del propio criterio.

En el dominio del trabajo y empleo, el lenguaje semántico o significativo es esencial para el intercambio y desarrollo de conocimientos y por tanto para lo que se ha dado en llamar el desarrollo científico-técnico. Esto no contradice el hecho práctico que muchos aspectos parciales de la utilización de conocimientos pueden ser reducidos a rutinas perfectamente programables en lenguaje cibernético y procesados en un computador.

Pero las cuestiones relacionadas con la formulación de problemas y de hipótesis, la previsión de consecuencias posible y la exploración de explicaciones causales en dominios completamente
nuevos, exigen la construcción concertada de significados y la organización de lenguajes especializados en torno a las intuiciones centrales o paradigmas de cada ciencia.

En el mundo de la producción y de la organización de instituciones el proceso de toma de decisiones (lo que habitualmente se llama gestión) tiene un componente importante de lenguaje o información semántica que hasta ahora había parecido quedar fuera del dominio de la automatización y por tanto, referirse a destrezas en que la máquina no puede reemplazar al hombre.

Cada día queda más claro sin embargo que, a partir de los programas convencionales de computación que han reducido drásticamente el uso de mano de obra de ingenieros, diseñadores e investigadores en tareas de rutina, así como han reemplazado a los contadores, cajeros, controladores de inventarios y bodegueros, la invasión del computador no se detiene.

Aunque el mundo ya anticuado de los ALGOL, FORTRAN, COBOL, etc. cae exclusivamente en el dominio de la información cibernética, hay esfuerzos más exitosos de aprovechamiento de las máquinas para amplificar la capacidad humana de manejar información significante. Bossel ha estudiado muchos aspectos de los modelos interactivos entre el hombre y la máquina en los que se intenta formalizar la información semántica incorporando juicios de valor y sistemas de evaluación normativa. En tales modelos, el computador amplifica la capacidad humana ordenando las cadenas lógicas de la investigación, eliminando las posibilidades contradictorias y limitando en cada caso el campo de opciones óptimas que queda abierito al tomador de decisiones humano.

Sin entrar en las técnicas específicas usadas en este enfoque -que podemos designar genéricamente como el método de los simuladores avanzados- la gran flexibilidad para usar técnicas cuantitativas y cualitativas e instrumentos formales especializados como la lógica simbólica, la técnica de conjuntos vagos ("fuzzy sets"),
el análisis de opinión, etc., resultan en un ahorro inmerso de esfuerzo humano en áreas que eran consideradas hasta ahora como exclusivas de especialistas de altas calificaciones. La exigencia de asignación de significado frente a problemas de preferencias, elección, expectativas, incompatibilidades, etc. confirman el carácter semántico de estas actividades.

La posibilidad de jugar en forma simultánea con diferentes horizontes de decisión dentro de límites vagos es una característica importante de estos procesos avanzados de decisión. Ella es igualmente válida para el planificador de estrategias comparativas, para el simulador de juegos de ajedrez o para el computador con que se pretende reemplazar a los conductores de camiones.

Beer y Schwember han descrito un intento ya algo antiguo pero bastante ambicioso de desarrollar un sistema interactivo complejo en que los actores humanos proveían la información semántica esencial en tanto que los computadores suministraban los resultados de programas convencionales. El nexo entre los hombres y la máquina es aquí la situación dinámica que requiere decisiones a gran velocidad y en la que el conjunto hombre-máquina aprende a mejorar su comportamiento sobre la base de los resultados empíricos.

Un caso mucho más reciente que cobra importancia teórica y práctica, y que tiene consecuencias mucho más dramáticas para el empleo, es el fenómeno de la automatización de oficinas. Aunque este proceso también se inicia a nivel de operaciones describibles en términos de programas puramente cibernéticos, como la producción de cartas tipo y la edición de textos de acuerdo a especificaciones precisas, el mero proceso de automatización elimina la necesidad de muchas actividades de carácter semántico (se hace menos frecuente el uso de decisiones sobre la base de experiencia y buen criterio, típico de secretarias y empleados de alto nivel) y, por otro lado, toma a su cargo toda la actividad rutinaria que ha estado asociada a un lenguaje de significados (por ejemplo, el intercambio de información entre dos gerentes de plantas paralelas).
Los ejemplos dados confirman al menos la plausibilidad de reemplazar en forma parcial el trabajo humano asociado con información semántica mediante máquinas que, aún si no logran un reemplazo total como en el caso de los robots, aumentan tanto la productividad que tienen un impacto muy significativo en el empleo total. Podemos pues establecer la siguiente conclusión provisoria:

1. EL PROCESAMIENTO DE INFORMACION SEMANTICA PUEDE SER REALIZADO AL MENOS PARCIALMENTE, POR SISTEMAS DE INTELIGENCIA ARTIFICIAL QUE ELIMINAN UNA FRACCION MUY SUSTANCIAL DE LAS DESTREZAS HUMANAS.

La tendencia histórica de las sociedades industriales avanzadas de desplazar el dominio de la actividad económica hacia el sector terciario o de servicios está de hecho vinculada a un rol creciente para la información semántica, de un modo similar a aquél en que la información cibernética ha implicado un desplazamiento de la actividad productora hacia sectores de tecnologías de punta. Estas ya no están necesariamente liradas a una alta densidad de energía, como era el caso de la llamada industria pesada o la petroquímica, por ejemplo.

Vale la pena hacer notar que si bien es cierto que la información significante es esencial para entender el funcionamiento de las actividades de dirección, ella no basta para dar cuenta total de tales actividades. Volveremos sobre este asunto al hablar de los "actos discursivos".

A estas alturas sería posible expandir nuestra discusión del circuito producción-necesidades básicas que fue explicado en términos de energía y entropía (o información-señal) para incorporar la información significante a la explicación del funcionamiento del mercado, guardando alguna analogía con el análisis marxista de la mercancía. Parece sin embargo conveniente postergar tal
discusión hasta estudiar, aunque sea en forma somera, la relación entre información simbólica y trabajo, que es mucho más intensa de lo que podría parecer a primera vista.

Más allá de los signos y de los significados están los símbolos que se refieren a la llamada información semiológica. Aunque no es del caso aventurarse aquí en las muchas dificultades epistemológicas relacionadas con la realidad de los símbolos, es indispensable intentar al menos una descripción superficial del asunto.

A primera vista, un símbolo establece una relación no mecánica entre dos ideas o imágenes. En la definición de la Academia, el símbolo es: "imagen, figura o divisa con que materialmente o de palabra se representa un concepto moral o intelectual, por alguna semejanza o correspondencia que el entendimiento percibe entre este concepto y aquella imagen". Para pasar a un plano más preciso, analicemos un ejemplo: cuando Freud construyó su explicación universal sobre la represión y la sublimación a partir de la tragedia griega, lo que él hizo fue "leer" una interpretación plausible detrás de las intenciones del autor muerto desde muchos siglos. Cuando, a nuestra vez, los observadores aceptamos la interpretación freudiana, no estamos afirmando que esa era en realidad la intención consciente del autor. Todos —el autor, Freud y nosotros— hemos participado en la construcción de un símbolo: hemos recorrido circularmente un caso (Edipo Rey, por ejemplo), para darle una interpretación, reinsertar la explicación en la obra, envolver con el nuevo significado a un arquetipo al que le asignamos validez universal y prestarle nuestra adhesión existencial al arquetipo resultante. Después de este proceso, tanto Sofocles como nuestros recuerdos de infancia y las interpretaciones de los comportamientos afectivos ajenos cobran una nueva dimensión.

Este proceso circular de asociación más o menos arbitraria de dos significados, aceptación de la capacidad explicadora de la
asociación, reinserción de la explicación en la situación original y adhesión (o rechazo) existencial, parece necesario para todos los dominios del lenguaje simbólico: el arte, la religión, los mitos de las culturas nacionales y aún la publicidad. Una cultura particular se caracteriza, entre otras cosas, por los códigos propios que le dan un carácter obvio a ciertos símbolos: carácter que transforma al símbolo en parte incuestionable de la realidad para los miembros de esa cultura. La relación entre la paloma, el amor y el Espíritu Santo que es evidente para alguien educado en la tradición cristiana puede ser perfectamente opaca y aún absurda para un extraño.

Después de esta explicación parece claro que, especialmente en las sociedades primitivas, hay algunas personas –brujos, sacerdotes– cuyo trabajo consiste en manejar símbolos. Si alguien duda que la contrapartida de las actividades simbólicas es todavía mucho más importante en las sociedades desarrolladas, intentemos una lista de personas cuya actividad está relacionada de un modo importante al lenguaje simbólico:

i) todos los artistas y literatos;

ii) los trabajadores de los medios de comunicación: periodistas, locutores, productores, directores, artistas del medio;

iii) los sacerdotes, místicos, gurus, adivinos y magos;

iv) expertos en publicidad, marketing y, en menor medida, especialistas en diseño de productos;

v) los políticos, militares y otros dirigentes de la sociedad, encargados no sólo de su conducción sino de preservar y reforzar las imágenes de identidad de cada sociedad por medios que van desde la propaganda chauvinista hasta los planes de perfeccionamiento cultural.
La gente práctica como los gerentes, tecnócratas y científicos positivistas tienden a ignorar el dominio simbólico (excepto cuando se trata de vender jabón) y a motejarlo de suntuario, irrelevante y metafísico. Los políticos, que al menos en este sentido tienen una intuición mucho más profunda, se dan cuenta de que el lenguaje simbólico es una dimensión esencial de las fuerzas que determinan la estructura social y las relaciones de poder. La referencia anterior a Edipo, tomada de los símbolos psicoanalíticos, apunta al valor práctico de los símbolos para revelar, comprender y determinar algunas de las corrientes más hondas de las acciones humanas.

Después de estas reflexiones no es clara sin embargo, la relación entre la información simbólica, el nivel de empleo y la posibilidad de reemplazar la actividad humana por máquinas.

Se pueden dar algunos ejemplos sugerentes, como el de los músicos de orquesta o banda de salón de bailes cuyos empleos se hicieron obsoletos con la aparición de los tocadiscos tragamonedas y, posteriormente, de toda la parafernalia estereofónica; y el del teatro, afectado primero por el cine y luego, por la televisión. No hay aquí necesariamente un fenómeno de reemplazo de un lenguaje humano por uno artificial sino más bien un "aumento de productividad" en que todo el mundo puede escuchar a Frank Sinatra en lugar del cantante del barrio. Sin embargo, también se produce el fenómeno opuesto, a saber, la difusión y amplificación por medio de la tecnología avanzada crea una demanda mucho mayor por los productos de los artistas. Probablemente nunca en el pasado se habían dado tantos conciertos en vivo, tantas obras de teatro y tantos otros actos de contenido simbólico más discutible (congresos, seminarios, competencias deportivas, etc.).

En otros dominios se ve cómo el estilo de trabajo simbólico es afectado por la tecnología. En los Estados Unidos los mecanismos de cabildo recurren a campañas masivas de cartas al público
registrado en memorias de computadores y luego canalizan la presión de ese mismo público sobre los gobernadores y senadores. Estos, a su vez, usan los mismos mecanismos para llegar a cada votante en su campaña.

Finalmente, están todas las importantes actividades de publicidad que usan el lenguaje simbólico para forzar el consumo de un producto dado; para crear la adicción a un producto o marca (sea un tigre en el estanque de gasolina o la vestimenta de vaquero con un cigarrillo); para imponer la renovación frecuente de los modelos, etc.

Aquí nos encontramos con dos consecuencias importantes: por un lado el dominio simbólico se incorpora progresivamente al proceso económico; y por otro, el lenguaje simbólico, aún cuando puede ser reemplazado o amplificado por medios mecánicos, parece determinar un campo ocupacional en expansión o, al menos, no decreciente. Ambos hechos no son totalmente independientes.

Con respecto al primer asunto, si volvemos al análisis simplificado de producción y consumo en términos de flujos de energía y control de entropía (o información cibernética), veremos que el desarrollo del capitalismo, al mediatizar la producción del consumo mediante los mecanismos de manipulación del mercado, introduce una cuña de lenguaje significante y simbólico.

El fenómeno básico de la toma de conciencia de una necesidad y la formulación de una demanda puede consistir en un enunciado de lenguaje significante por parte del consumidor, al igual que la decisión técnica de producir por parte del empresario. Pero la manipulación tanto de la apariencia del producto y su diseño, incluyendo elementos con significados subliminales, como de la inducción a la demanda, se realizan principalmente en el dominio simbólico.

Llegamos así a una conclusión tentativa mucho más provisoria que cualquiera de las anteriores:
8. AUNQUE LA PARTICIPACION HUMANO EN EL USO DE LENGUAJE SIMBOLICO PUEDE SER AFECTADA PROFUNDAMENTE POR SISTEMAS ARTIFICIALES QUE RESULTAN DEL DESARROLLO TECNOLOGICO, ESTE DOMINIO PARECE ESTAR (TODAVIA) EN UNA FASE DE EXPANSION DEL EMPLEO.

Aún quedan fuera de análisis las actividades de dirección de nivel superior, en el campo político, económico, financiero, militar y ritual. Creo que tales actividades se asocian con los niveles de información significante y simbólica pero dependen críticamente de otro dominio del lenguaje.

Los llamados actos discursivos (o speech acts, en la formulación original de Austin y Searle) tienen que ver no tanto con el carácter individual de los conceptos sino con el contexto de la relación social en que se usa prácticamente un enunciado verbal. Un político en campaña dice algo como lo siguiente: "si usted vota por mí, yo haré construir un estadio en esta ciudad". Vale decir, él formula una promesa condicionada a una decisión del electorado. También efectúan actos discursivos el director de una gran empresa que ordena o propone acciones a sus subordinados, quienes se comprometen a llevarlas a cabo dentro de un programa. Otro tipo de acto discursivo sucede en las relaciones contractuales, en que cada una de las partes se compromete a una cierta acción frente a la promesa recíproca de la otra.

Este terreno de los actos discursivos empieza recién a ser explorado desde el punto de vista de las aplicaciones prácticas de los computadores y otras máquinas manipuladoras de información. Si él se revela fructífero, lo probable es que suceda algo análogo a lo que pasa en el terreno de la información simbólica: la automatización destruye actividades y empleos pero también genera dominios nuevos de actividades de nivel superior y expande la capacidad de control de los que poseen la tecnología del rubro. En todo caso, estas afirmaciones deberían tomarse con mucha reserva.
La figura 5 resume muy esquemáticamente el análisis anterior. Ella muestra la situación desde el caso peor, de sustitución total de la mano de obra proveedora de energía o no calificada, hasta el caso menos definido de las tareas de la alta dirección.

Hay ya sociedades, como la de Estados Unidos, en que más del 99 por ciento de la energía utilizada es de origen no humano y en que más del 50 por ciento de la población activa se concentra en actividades definidas como informacionales \(^{53/}\). Esto no significa obviamente que uno podría concebir una sociedad con el mismo balance energético que los Estados Unidos pero que empleara 100 veces más trabajadores no calificados para suministrar la energía que hoy se requiere.

Para el caso de la información cibernética se muestra una cifra puramente tentativa de reemplazo del 60 por ciento de la mano de obra para indicar los límites que todo sistema, incluso uno muy represivo, debe respetar en términos de ritmo de inversiones, cambios tecnológicos y cambios estructurales de la demanda.

Estos dos niveles -el energético y el de la información de señal- son los que en este momento aparecen más vinculados al desempleo estructural.

En el nivel de la información semántica también hay una destrucción neta de empleo, tanto por el uso de simuladores avanzados en sistemas hombre-máquina, cuanto por el muy importante impacto que tendrá el proceso de automatización de oficinas que los microprocesadores hacen posible. En los próximos 10 años este fenómeno alcanzará, probablemente, porcentajes importantes de la fuerza de trabajo en los países capitalistas desarrollados. La cifra dada, esto es, 40 por ciento, tiene sólo carácter indicativo.

En los dos niveles superiores la situación es mucho menos clara, y probablemente se producirá un aumento neto del empleo en el sector que maneja información simbólica y para personal altamente calificado.
FIGURA 5 - TENDENCIA DE REEMPLAZO DE LA ACTIVIDAD HUMANA POR MAQUINAS.

- ACTOS DISCURSIVOS
 - INFORMACION SIMBOLICA
 - INFORMACION SEMANTICA

- MEDIOS DE COMUNICACION

- CREACION DE NUEVOS EMPLEOS AVANZADOS

- SIMULADORES AVANZADOS Y AUTOMACION DE OFICINAS
- 40%?

- INFORMACION CIBERNETICA
 - ROBOTS Y COMPUTADORES TRADICIONALES
 - 60%?

- ENERGIA
 - MOTORES
 - 99%

- CONTRIBUCION HUMANA
- REEMPLAZO POR MAQUINAS
El análisis en su conjunto describe bien el consabido fenómeno de concentración con destrucción periférica. Al interior de cada sociedad, en particular de aquéllas que han llegado a un nivel de capitalismo desarrollado, hay una tendencia estructural a la destrucción del empleo no calificado y del de baja calificación. Al mismo tiempo, el esfuerzo de educar y especializar a los que pueden ocupar los empleos de nivel superior se va haciendo cada vez mayor y más costoso. Los empleos nuevos creados en los sectores de alta calificación no compensan los puestos destruidos en los tramos inferiores, a menos que haya un control planificado de todas las variables fundamentales de la estructura económica.

La Destrucción de los Empleos y los Países de la Periferia

Creo que era indispensable presentar las razones estructurales de fondo para la evolución del tipo de trabajos y la destrucción de empleos dentro de la dinámica capitalista antes de abordar el mismo problema en los países periféricos. En la medida en que las economías se "transnacionalizan", se hace más irreal el análisis de cualquier fenómeno económico y social fundamental en un contexto artificialmente limitado. El trabajo es, quizás desde los tiempos de las expediciones para cazar esclavos, el factor económico más sujeto a estos efectos a través de las fronteras. Esto es particularmente válido cuando, el resto del sistema económico-político se coloca en forma consciente bajo una dependencia total del centro dominante.

Si bien los países capitalistas desarrollados han conocido períodos prolongados de empleo pleno, sobre todo en circunstancias en que los mecanismos Keynesianos eran fácilmente compatibles con una situación internacional de fuerte superávit hacia los centros de dominación, en la periferia subdesarrollada el desempleo ha sido la norma y no la excepción. La razón de fondo es obvia: las periferias se han transformado en economías monetarias en un proceso lento, a menudo bajo dominio colonial, en que no se ha dado desarrollo industrial pero sí se ha cumplido el requisito de Marx para
la acumulación primitiva, a saber, la expropiación del campesinado.

Es así como la coincidencia de todos estos fenómenos estructurales (campesinado forzado a abandonar el campo, urbanización sin crecimiento industrial concomitante, flujo hacia el exterior del excedente acumulado, monetarización desde la cúspide socio-económica) se combina para que las periferias sean regiones de desempleo endémico.

En estas circunstancias el costo de la mano de obra de baja calificación es mínimo. El colchón interno de desempleados "sombrea" los salarios hacia abajo y la existencia de otros países periféricos tratando de atraer inversión a cualquier precio, refuerza este efecto de depresión del salario.

Si analizamos la economía de los países desarrollados, veremos que la producción y el empleo son parte integrante del circuito dinámico macroeconómico, muy estrechamente vinculados al consumo. De ahí que, como ya se ha dicho, la cuestión de la demanda efectiva sea tan crítica para el capitalismo moderno y la única razón económica eficiente para limitar el desempleo.

Si el consumo de las masas trabajadoras puede ser parcial o totalmente reemplazado como fuente principal de demanda efectiva, un sistema económico motiva sólo por la ganancia no tiene ninguna razón para proteger el empleo y sí muchas para destruirlo. Por ello es que, desde el comienzo, el capitalismo ha luchado con los problemas de la demanda débil. La primera etapa se cumplió hacia fines del siglo XIX en Europa y los Estados Unidos cuando las masas urbanas se incorporaron a la economía monetaria y lograron ser consumidores activos.

En el pasado las periferias han suministrado a los países dominantes un espacio pasivo muy útil para la expansión capitalista, principalmente como proveedores de materias primas abundantes y baratas y como consumidores de productos elaborados encarecidos en
forma artificial para mercados cautivos. En las últimas dos décadas sin embargo, los modelos de desarrollo impulsados desde el centro también han enfatizado el rol productivo de las periferias no sólo ya como proveedores de materias primas sino también de mano de obra barata. Los más ingenuos también mencionan el rol potencial de los mercados periféricos así como algunos sueñan con proveer a todos los chinos de automóvil. Pero esto no es tan fácil dado que el esfuerzo de aumentar el consumo está siempre relacionado con el nivel absoluto ya alcanzado. De este modo se necesita duplicar el consumo medio del habitante de la India para obtener el mismo resultado en incremento de la demanda que si el norteamericano medio aumenta su consumo en 2 por ciento. Dado que la distribución del ingreso es generalmente más regresiva en la periferia que en el centro, las perspectivas de aumentar masivamente el consumo son bastante limitadas.

Así pues, dentro de la lógica capitalista contemporánea, la vía más eficaz para el desarrollo periférico es la explotación de la mano de obra barata. En este sentido se suelen citar algunos ejemplos aislados con resultados aparentemente espectaculares: Corea del Sur 54, Taiwan, Brasil y Singapore, que han seguido el camino que inauguró Hong Kong, cuando era la factoría del Imperio Británico, para explotar a los trabajadores asiáticos.

Se produce algún desasosiego al comprobar que todos esos ejemplos coinciden con sistemas en los que regímenes dóciles y fascistoides han sido instalados en el poder con la connivencia o el apoyo directo de los Estados Unidos y de toda la red de instituciones financieras supranacionales que apoyan las prescripciones económicas norteamericanas. El desasosiego aumenta al verificar que la masa de inversiones extranjeras está controlada por el grupo cada vez más concentrado de corporaciones multinacionales que negocia permanentemente condiciones más ventajosas.

El modelo que tuvo éxito cuantitativo en esos casos aislados, está siendo imitado por otros regímenes militares que siguen
simultáneamente las políticas económicas prescritas por el FMI y las prácticas represivas hacia los trabajadores. Se busca de este modo definir lo que se ha llamado ventajas comparativas naturales. Algunos países candidatos a este esquema antes o ahora son Filipinas, Indonesia, Uruguay, Chile, Tailandia y Costa de Marfil.

De este modelo más reciente y muy vinculado a la metafísica de los mercados (respaldados por ejércitos muy bien equipados y nada "naturales") se ha impuesto sobre el modelo desarrollista que durante mucho tiempo impulsó la CEPAL en América Latina y que pretendía hacer compatibles sistemas políticos de democracia más o menos formal con procesos de crecimiento económico, redistribución moderada del ingreso y autonomía internacional relativa. Ese proceso fracasó en lo sustancial cuando el equilibrio interno precario entre oligarquías pequeñas y superprivilegiadas por un lado y grandes masas en condiciones muy desmedradas, se hizo incompatible con las instituciones democráticas. La intervención coordinada de lo que alguien ha llamado los árbitros de última instancia, a saber, las fuerzas armadas locales apoyadas por las potencias dominantes, clausuró por un lado los modelos de desarrollo autónomo y está institucionalizando la integración sin restricciones de las economías periféricas al sistema capitalista transnacional. A la luz del análisis de las leyes de sustitución del trabajo humano por maquinaria, se puede atisbar una serie de peligros que el nuevo modelo inevitablemente lleva implícitos:

i) el progreso tecnológico alcanzado en los siglos XVIII y XIX se ha generalizado lo suficiente para poder afirmar que las actividades energéticas o de mano de obra no calificada que han sido descartadas en las economías dominantes tienen también muy poca cabida en las periferias. Tareas tales como la tala de árboles a mano, la limpieza de matorrales, el reforzamiento de galerías de minas y aún la albañilería de ladrillos se están mecanizando en todas partes o se van abandonando aún en las periferias.
La proliferación de las distintas clases de motores ha sido tan rápida a pesar de la preocupación reciente con el arotamiento de los combustibles fósiles y de las nuevas esperanzas, algo ingenuas en este caso, de soluciones de tecnología intermedia, que no es posible concebir ningún sistema productivo coherente para el futuro que tenga que depender de modo significativo de la energía humana. Así pues, es obligatorio concluir que la mano de obra no calificada y mera proveedora de energía no es una solución seria al problema del desempleo salvo quizás en soluciones de muy corto plazo ligadas a ciertas formas de agricultura de subsistencia.

ii) Los sectores que todavía usan el trabajo humano en forma abundante para procesos de información cibernética son conocidos como las ramas industriales intensivas en mano de obra. Casos típicos son la industria de la confección, del calzado, la vajilla de cerámica, muebles y productos de madera, juzgadería, algunos trabajos de armaduría mecánica y electrónica como los electrodomésticos y algunas agroindustrias. Estos son ejemplos típicos de industrias que se han trasladado al Lejano Oriente y han contribuido al desequilibrio que se ha producido en Europa y en Estados Unidos en el circuito de empleo-consumo. Estas industrias se han desplazado hacia la periferia atraídas por la mano de obra barata que las hará más competitivas en los mercados de consumo masivo de los países desarrollados. Los mercados consumidores locales no presentan ningún atractivo para estos países dado que sus consumos de este tipo sólo podrían aumentar si mejorara la distribución del ingreso, en cuyo caso perderían su ventaja relativa natural de mano de obra barata.

Más aún, dado que el inventario total de mano de obra disponible en los países periféricos es prácticamente
inagotable para las próximas décadas y que todas las industrias clasificadas como de mano de obra intensiva requieren muy poco capital fijo, ellas son esencialmente móviles. Tan pronto como los obreros sudcoreanos agren salarios superiores a los de subsistencia mínima, las mismas firmas que controlan las fábricas en Corea del Sur desplazarán sus programas de producción hacia las fábricas ya montadas en Filipinas o Togo y mantendrán su rentabilidad 561. Este raciocinio mantiene su validez aún antes de considerar los efectos negativos globales del desempleo inducido en los países desarrollados o el hecho que una fracción creciente de la producción de las fábricas en cuestión se orienta a productos de lujo de alto precio que tienen un mayor contenido de mano de obra incorporada, un mayor valor agregado en la cadena de comercialización y un mercado más restringido, que responde sólo a las "necesidades de la imaginación" de que habla Marx. En resumen, por esta vía no hay forma de alcanzar un equilibrio realista entre la demanda efectiva de los sectores más pudientes de los países ricos y la masa disponible para entregar mano de obra barata en el mundo periférico. Basta el empleo de una fracción pequeñaísima de todos los trabajadores potenciales para que los inversionistas multinacionales acaparen toda la plusvalía que el mercado puede entregar. Un juguete hecho en Corea o un paraguas armado en Lesotho dejan mucho más valor en las arcas de las líneas aéreas que los transportan que en los escuálidos bolsillos de los trabajadores locales respectivos. Cada país que sigue la receta sudcoreana hace más fácil para los inversionistas incrementar sus utilidades y más difícil para sus propios trabajadores subsistir con lo que ganan.

iii) Los sectores industriales avanzados, a saber, aquellos que emplean personal altamente calificado para manipular información semántica ("know-how") no van a emigrar al mundo periférico pues corresponden por lo general a actividades intensivas en capital, y los trabajadores especializados que ellas requieren se producen en forma abundante en esos mismos países desarrollados con sus sistemas educacionales de alto
nível y sus esquemas de entrenamiento subsidiarios por los gobiernos.

Así pues la lógica contemporánea del empleo sólo puede reforzar en un dominio más la tendencia general a la concentración de la riqueza y el poder en las metrópolis y la miseria y dependencia en las periferias, a menos que haya otros cambios estructurales mucho más profundos. Entre tales cambios (incompatibles con las reglas del capitalismo) están la necesidad de equilibrios en países o regiones entre la demanda efectiva y la producción total de la fuerza de trabajo, y entre los aumentos originales de productividad y la mejora en la distribución del ingreso.

En la disminución del empleo el factor que se concentra es la calidad del trabajo, a saber, la posibilidad de trabajar con información significativa, de manipular representaciones simbólicas y de participar en actos discursivos. En un sentido más general, otros han hablado de fuga de cerebros, monopolio de conocimientos y tendencia a la especialización.

El flujo centrípeto se produce no sólo desde las periferias hacia las metrópolis. Al interior de unas y otras hay también una concentración de talentos y destrezas en aquellas regiones físicas, sectores económicos y estratos sociales privilegiados por el sistema establecido.

A causa de la incapacidad intrínseca de distribuir empleos e ingresos del sistema capitalista, vemos cómo su modelo de desarrollo se ve forzado a recurrir crecientemente a la represión organizada y a cultivar la ideología de la explosión demográfica sin ningún examen causal serio.

En el caso del sector agrícola el trabajo requerido también puede ser analizado en términos de energía e información. Sin embargo, en la cuestión rural hay otros factores de control íntimamente ligados al uso de la fuerza de trabajo que hacen menos ilumi-
nador el enfoque que se ha usado para la industria. No entraré en
detalle en las diferencias puesto que ellas están abundantemente
documentadas 57/.

La destrucción del entorno rural en cuanto nicho para la su-
pervivencia de formas de producción intensiva de mano de obra que
ocurrió en los países desarrollados como parte del proceso de acu-
mulación precapitalista, ha resultado en el reemplazo de la clase
numerosa de los campesinos pobres por un proletariado agro-indus-
trial de alta productividad. El mismo proceso se repite de manera
mucho más brutal en la periferia mediante el efecto combinado de
los terratenientes tradicionalistas y el eficiente sistema de la
agroindustria multinacional.

La eliminación del empleo agrícola se ve agravada por la
reorientación de la producción de acuerdo al criterio de rentabili-
dad máxima. Hace ya tiempo, cuando los alimentos dejaron de ser
sólo un medio de satisfacer necesidades humanas básicas, casi todos
los productos agrícolas se transformaron en mercancías en sentido
estrieto. Esto quiere decir que ellos no sólo se vendían en un mer-
cado sometido a las leyes de oferta, demanda y especulación, sino
que el producto perdió su carácter específico de originario en una
región para ser consumido en el mismo o similar entorno físico y
cultural. Una cantidad del producto que satisface una específica-
ción normalizada de calidad equivalente meramente a un valor de
cambio o precio en un mercado internacional.

Este procedimiento se inició con el café, el azúcar y el ta-
baco: productos tropicales que, como mercancías, se pusieron a dis-
posición de las metrópolis imperiales. Continuó luego con los
granos, la carne y los productos lácteos, para pasar a las frutas
y verdes y, más recientemente, a las flores 58/. El paso si-
guiente, que ya está bastante avanzado en Brasil, Australia y Su-
dáfica, es la orientación de la producción agrícola a la satis-
faccción de las necesidades básicas de las máquinas 59/. Podemos
ya empezar a espantarnos ante la perspectiva de que el Sahel y el
Africa Tropical algún día resolverán sus explosiones demográficas y pasarán a ser grandes cultivos casi deshabitados mientras la maquinaria más eficiente cultiva casavas para los motores de millones y millones de automóviles en el hemisferio norte.

Este cuadro, digno de las mejores percepciones africanas de Dalí, puede corresponder a una visión exagerada pero con suficiente base como para no tomarlo a la ligera. El refuerza el argumento de que el trabajo agrícola se explica mejor en relación con los destinos últimos de la producción que en términos de energía e información.

Sin embargo, el examen del trabajo productivo tanto en la industria como en la agricultura, cuando es mirado en forma simultánea en todas las metrópolis capitalistas y en las periferias dependientes, lleva a conclusiones espeluznantes: las inestabilidades inherentes a un sistema que articula todas sus decisiones en torno a una condición abstracta de máximo como es la rentabilidad de la inversión, tienen muy pocas soluciones compatibles con el desarrollo tecnológico desvinculado de la calidad de la subsistencia. Se puede recurrir a correctivos técnicos por un tiempo; se pueden usar mecanismos represivos más o menos eficaces; se puede forzar mecánicamente una política ideológica de control de población. Pero no está nada de claro cómo estos factores pueden devolver la estabilidad al sistema a menos que se elimine a casi toda la especie y se vuelva a la esterilidad de los desiertos.

En el caso de los países subdesarrollados la situación práctica es todavía peor, como lo prueba la presencia creciente de dictaduras militares patrocinadas por las potencias capitalistas dominantes y dedicadas a aplicar la represión política, económica y social.

La consistencia con que se aplican en forma indiscriminada las recetas de las agencias transnacionales que dominan las
políticas económicas financieras (FMI, Banco Mundial y bancos regionales de desarrollo) junto con la ideología monetarista redíviva está resultando en un cuadro de síntomas gravísimo y generalizado:

i) desempleo estructural, salarios de subsistencia determinados por la ley de oferta y demanda, restricciones a la actividad sindical;

ii) producción sesgada hacia el consumo suntuario de las minorías de altos ingresos;

ii) restricciones al gasto público concentradas en los servicios sociales;

iv) aumento desproporcionado de los presupuestos militares y policiales;

v) política económica centrada en torno a la manipulación monetaria de acuerdo al dogma de Friedman;

vi) concentración creciente de la riqueza y la propiedad productiva, y subsiguiente deterioro de la distribución del ingreso.
NOTAS

1/ La Política, ed. Penguin, pág. 31.

2/ JENKINS y SHERMAN, 1979, pág. 113.

3/ Hay que hacer hincapié en el respeto de Marx tanto por las ciencias naturales como por los fundamentos empíricos de su teoría. Buena parte de lo que aquí se discute sobre energía e información está embrionariamente en El Capital. Después de Engels sin embargo, la tradición marxista en las ciencias sociales ha dejado debilitarse la preocupación por la comprensión de la naturaleza y sus leyes.

6/ Ver el capítulo sobre el "Surrealismo del Dinero".

8/ No parece haber equivalente español para esta poco elegante expresión inglesa, que sugiere adecuadamente la combinación de conocimientos técnicos y destrezas tan esenciales para el sistema productivo moderno.

9/ Que alguna legitimidad debería tener en cuestiones económicas después de su experiencia como director de la Casa de Moneda de Inglaterra.

10/ POINCARE, 1905, citado por HOFFMAN, 1977, pág. 1.

11/ En rigor, uno debería hablar de los vectores, fuerza y desplazamiento, que además de magnitud tienen dirección, pero tales tecnecismos no son esenciales para el análisis.

12/ Que ya se ha discutido al analizar la definición del dinero.

13/ Véase la discusión que hace MARX de la máquina a vapor en El Capital, tomo III, Parte I, Cáp. V.

14/ Ver GEORGESCU-ROEGEN, 1971.

15/ Basada en datos de DUNIN y PASSMORE, 1967.

16/ FOLEY, 1976, pág. 20.
Ver el capítulo sobre las "Dimensiones del Unico Mundo" para una discusión de la ley exponencial.

En el Museo de la Catedral de Florencia se conservan las herramientas y algunas máquinas simples muy perfectas diseñadas por el propio BRUNELLESCHI para la construcción de su famosa cúpula. Nótese que las máquinas simples son meras herramientas pues utilizan solamente la energía humana.

Las condiciones de esta interfase o transductor entre el hombre y la naturaleza son importantes para entender el análisis posterior de los robots.

En una fábrica con tradición de productos en porcelana, como Wedgwood en Inglaterra, se pueden contemplar las distintas etapas de descomposición de destrezas y su recomposición en máquinas continuas y semicontinuas.

Entre las ciencias relacionadas con este tema están, al menos, la matemática, a través del álgebra de Boole; la física, con su interés especial en la electrónica; la neurofisiología, preocupada de la percepción, transmisión de señales e instrucciones; y la cibernética, que sintetiza todos los aspectos anteriores en las teorías de la comunicación y los estudios de inteligencia artificial.

La expresión observador no es arbitraria y está llena de implicaciones epistemológicas.

En rigor, "unidad de información equivalente al resultado de elegir entre dos alternativas igualmente probables", de acuerdo al diccionario WEBSTER.

ASHBY, 1956 ha llamado variedad a la medida de la complejidad de un sistema observable. Ver también BEER, 1965, pág. 93-98.

Los físicos saben que esta condición de gasto de energía asociado con los cambios de información resuelve la famosa paradoja del demonio de Maxwell. También esa condición está detrás de la relación entre entropía e información. Ver BEER, pág. 345-369, y también MORowitz, 1968.

Traducción aproximada de "feedback loops".

29/ El International Herald Tribune, 27.12.77 agregaba que "un Versatran serie F... puede aprender 32 trabajos distintos y recordar otros con ayuda de una grabadora de cassettes. Es suficientemente delicado como para empacar huevos y bastante fuerte como para levantar un automóvil pequeño con su único brazo. El Sr. Cannon dice que los robots normalmente pagan su propio valor en un año y medio... Ellos son una mejor inversión que los trabajadores o los controles automáticos. Son buenos obreros, no se aburren, no van al excusado y no se enojan con el jefe..."

30/ JENKINS y SHERMAN, 1979.

31/ El cerebro tiene cerca de 100 billones de células, lo que es una medida grosera del inmenso número de configuraciones posibles distintas o estados de información.

32/ JENKINS y SHERMAN, 1979.

33/ MARX, El Capital, I, Capítulo I sobre La Mercancía.

34/ Ver MOROWITZ, 1968, para una presentación rigurosa del principio biofísico de que "el flujo de energía a través de un sistema resulta en la organización del sistema". Ver también NICOLIS y PRICOGIN, 1977.

35/ Se han escrito ya demasiadas inecías sobre la posibilidad de que toda la Biblia o las obras completas de Shakespeare puedan resultar del juego aleatorio de un chimpancé con una máquina de escribir durante un tiempo muy largo. Tal probabilidad es idéntica a cero en el tiempo concebible para la existencia del universo, y los que la plantean, entienden poco del problema básico de la organización.

37/ Ver en particular BEER, 1966 y ASHBY, 1956, y sus discusiones sobre la "ley de la variedad requerida", que se puede resumir en el enunciado "sólo la variedad puede manejar variedad".

38/ Este tipo de circularidad esencial, característico de los procesos biológicos e históricos, le va a contrapelo a las ciencias sociales positivistas pero es una propiedad indispensible para cualquier intento de descripción racional de la dinámica de los sistemas correspondientes.

40/ Se usa "entrada" como la traducción menos mala para "input", dado que la alternativa "insumo" tiene una connotación bien específica y consagrada en economía.

41/ Se ha visto al discutir los mecanismos financieros que los principios de maximización de la acumulación y la utilidad son distintos y complementarios.

42/ Durante los últimos años, casi toda Europa y muy especialmente Francia, han expresado la preocupación pública por sus poblaciones que empiezan a contraerse. No faltan los positivistas simples que han extrapolado curvas para determinar cuándo se extingue el último francés.

43/ Ver ATTALI, 1975.

44/ SEARLE, 1969; FLORES, 1979. El concepto de acto discursivo me fue presentado por primera vez por el mismo FLORES en relación con su interés en el desarrollo de las organizaciones. Ver capítulo sobre el "Monopolio del Lenguaje".

46/ MACKAY, 1969.

47/ Uso la palabra "heurístico" en su significado tomado del inglés, a falta de un equivalente en español. Según el WEBSTER, heurístico quiere decir "útil para orientar, descubrir o revelar; valioso para estimular la investigación empírica pero carente de pruebas..."

49/ Conducir un vehículo es una actividad aparentemente trivial que no puede ser reducida totalmente a operaciones cibernéticas debido a la complejidad del entorno, poblado por observadores y actores, cada uno susceptible de comportamientos inesperados.

50/ BEER, 1975.

52/ Este hermoso equivalente español del difundido vocablo inglés lobbying merece ser más usado.

53/ ATTALI, 1975, pág. 48.
54/ ALDEMAN y ROBINSON, 1978.

55/ M.A. GARRETON, FLACSO, Santiago - Chile.

56/ MAKHIJANI, 1976, reproduce un comentario de J. SAAR, del Washington Post sobre "Work in Korea: Pain and Despair" en que se discuten las jornadas de trabajo de 84 horas por semana para las mujeres y los salarios de 22 centavos de dólar por hora.

58/ MACKINTOSH, 1977.

59/ MKCANN; 1975.